metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-samsum-test
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 43.8643
t5-small-finetuned-samsum-test
This model is a fine-tuned version of t5-small on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 1.6600
- Rouge1: 43.8643
- Rouge2: 20.6633
- Rougel: 36.8847
- Rougelsum: 40.4157
- Gen Len: 16.5575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.8479 | 1.0 | 7366 | 1.6600 | 43.8643 | 20.6633 | 36.8847 | 40.4157 | 16.5575 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3