soBeauty's picture
End of training
382e562
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: 20230928-7-xlm-roberta-base-new
    results: []

20230928-7-xlm-roberta-base-new

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.4740
  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Accuracy Validation Loss
4.4628 0.46 200 0.3220 nan
4.1552 0.91 400 0.3249 nan
3.8537 1.37 600 0.3822 nan
3.5294 1.82 800 0.3914 3.6973
3.378 2.28 1000 0.3770 3.5247
3.3717 2.73 1200 0.3795 nan
3.3769 3.19 1400 0.4033 2.9623
3.2682 3.64 1600 0.3975 3.3065
3.3275 4.1 1800 0.4603 3.0879
3.1686 4.56 2000 0.4385 2.8513
3.1107 5.01 2200 0.4419 nan
3.0418 5.47 2400 0.4372 nan
2.9602 5.92 2600 0.4792 2.8451
2.9038 6.38 2800 0.4772 2.7947
2.8495 6.83 3000 0.415 2.9448
2.9444 7.29 3200 0.4840 nan
2.8306 7.74 3400 0.4806 2.3816
2.8293 8.2 3600 0.4909 2.8671
2.7785 8.66 3800 0.5377 2.6516
2.7991 9.11 4000 0.5164 nan
2.8131 9.57 4200 0.4740 nan

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3