smitbutle's picture
End of training
b653a30
|
raw
history blame
2.46 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - generated
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-invoice
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: generated
          type: generated
          config: sroie
          split: test
          args: sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.010438413361169102
          - name: Recall
            type: recall
            value: 0.02028397565922921
          - name: F1
            type: f1
            value: 0.013783597518952447
          - name: Accuracy
            type: accuracy
            value: 0.6785338108278913

layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1320
  • Precision: 0.0104
  • Recall: 0.0203
  • F1: 0.0138
  • Accuracy: 0.6785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.01 1 2.3858 0.0114 0.0649 0.0194 0.1904
No log 0.02 2 2.2795 0.0108 0.0527 0.0180 0.3240
No log 0.03 3 2.2072 0.0131 0.0446 0.0203 0.5155
No log 0.04 4 2.1575 0.0103 0.0243 0.0145 0.6345
No log 0.05 5 2.1320 0.0104 0.0203 0.0138 0.6785

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1