smangrul commited on
Commit
9160844
·
verified ·
1 Parent(s): 9f4a2f1

Model save

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: codellama/CodeLlama-7b-Instruct-hf
7
+ model-index:
8
+ - name: codellama-hugcoder-v2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # codellama-hugcoder-v2
16
+
17
+ This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4602
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0002
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 16
41
+ - seed: 11
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 64
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 2000
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 0.5827 | 0.05 | 100 | 0.6188 |
54
+ | 0.5648 | 0.1 | 200 | 0.5643 |
55
+ | 0.5316 | 0.15 | 300 | 0.5359 |
56
+ | 0.5008 | 0.2 | 400 | 0.5202 |
57
+ | 0.4919 | 0.25 | 500 | 0.5042 |
58
+ | 0.4665 | 0.3 | 600 | 0.4962 |
59
+ | 0.4324 | 0.35 | 700 | 0.4856 |
60
+ | 0.4179 | 0.4 | 800 | 0.4804 |
61
+ | 0.3614 | 0.45 | 900 | 0.4738 |
62
+ | 0.4344 | 0.5 | 1000 | 0.4703 |
63
+ | 0.3473 | 0.55 | 1100 | 0.4672 |
64
+ | 0.3777 | 0.6 | 1200 | 0.4648 |
65
+ | 0.3378 | 0.65 | 1300 | 0.4620 |
66
+ | 0.3744 | 0.7 | 1400 | 0.4614 |
67
+ | 0.3834 | 0.75 | 1500 | 0.4610 |
68
+ | 0.2859 | 0.8 | 1600 | 0.4603 |
69
+ | 0.3787 | 0.85 | 1700 | 0.4598 |
70
+ | 0.3132 | 0.9 | 1800 | 0.4597 |
71
+ | 0.3607 | 0.95 | 1900 | 0.4595 |
72
+ | 0.3684 | 1.0 | 2000 | 0.4602 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - PEFT 0.8.2
78
+ - Transformers 4.38.0.dev0
79
+ - Pytorch 2.1.0+cu121
80
+ - Datasets 2.16.1
81
+ - Tokenizers 0.15.1