|
import torch |
|
from typing import Optional, Tuple |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x.chunk(2, dim=-1) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
@torch.jit.script |
|
def apply_rotary_pos_emb(x, cos, sin): |
|
|
|
cos = cos[:, :, : x.shape[-2], :] |
|
sin = sin[:, :, : x.shape[-2], :] |
|
|
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
""" |
|
Rotary position embeddings from RoFormer (Su et. al, 2021). |
|
""" |
|
|
|
def __init__(self, dim_model: int, *_, **__): |
|
super().__init__() |
|
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self._seq_len_cached = None |
|
self._cos_cached = None |
|
self._sin_cached = None |
|
|
|
def update_cos_sin_tables(self, x, seq_dimension=1): |
|
seq_len = x.shape[seq_dimension] |
|
|
|
|
|
|
|
if ( |
|
seq_len != self._seq_len_cached |
|
or self._cos_cached.device != x.device |
|
or self._cos_cached.dtype != x.dtype |
|
): |
|
self._seq_len_cached = seq_len |
|
t = torch.arange( |
|
x.shape[seq_dimension], device=x.device, dtype=torch.float32 |
|
) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype)) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
|
|
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype) |
|
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype) |
|
|
|
return self._cos_cached, self._sin_cached |
|
|
|
def forward( |
|
self, q: torch.Tensor, k: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
self._cos_cached, self._sin_cached = self.update_cos_sin_tables( |
|
k, seq_dimension=-2 |
|
) |
|
|
|
return ( |
|
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), |
|
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), |
|
) |
|
|
|
|
|
def __test_rope__(): |
|
dtype=torch.float16 |
|
batch=4 |
|
seqlen=2048 |
|
dim=4096 |
|
num_heads=32 |
|
dim_key_head=dim // num_heads |
|
|
|
x=torch.randn(batch,seqlen,num_heads,dim_key_head).to(dtype=dtype).to('cuda') |
|
|
|
rpe=RotaryEmbedding(dim_key_head).to(dtype=dtype).to('cuda') |
|
q,k=rpe(q=x,k=x) |
|
|
|
|
|
|
|
|
|
|