dev-slx commited on
Commit
83ea553
1 Parent(s): 959e89b

init commit

Browse files
LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
README.md CHANGED
@@ -1,8 +1,56 @@
1
- ---
2
- license: apache-2.0
3
- ---
4
- # SliceX AI ELM
5
- This repository contains code to run SliceX AI ELM models.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  ## Installation
8
- ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SliceX AI™ ELM (Efficient Language Models)
2
+ This repository contains code to run our ELM models.
3
+
4
+ Models are located in the "models" folder. ELM models in this repository comes in three sizes (elm-1.0, elm-0.75 and elm-0.25) and supports the following use-cases.
5
+ - news_classification
6
+ - toxicity_detection
7
+ - news_content_generation
8
+ - news_summarization
9
+
10
+ ## Download ELM repo with model files
11
+ ```bash
12
+ sudo apt-get intall git-lfs
13
+ git lfs install
14
+ git clone <library_path>
15
+ ```
16
+ (Optional) Installing git-lfs without sudo,
17
+ ```bash
18
+ wget https://github.com/git-lfs/git-lfs/releases/download/v3.2.0/git-lfs-linux-amd64-v3.2.0.tar.gz
19
+ tar -xzf git-lfs-linux-amd64-v3.2.0.tar.gz
20
+ PATH=$PATH:/<absolute-path>/git-lfs-3.2.0/
21
+ git lfs install
22
+ ```
23
+
24
+
25
+ ## (Optional) Setup docker
26
+ ```bash
27
+ docker run --gpus all -it --shm-size=8g --name elm_inference --ulimit memlock=-1 --rm -v <elm_code_path>:/elm_code nvcr.io/nvidia/pytorch:23.09-py3
28
+ ```
29
 
30
  ## Installation
31
+ ```bash
32
+ cd <elm_code>
33
+ pip install -r requirements.txt
34
+ ```
35
+
36
+ ## How to use - Run ELM on a sample task (e.g., news classification)
37
+ ```bash
38
+ python run.py <elm-model-directory>
39
+ E.g. python run.py models/elm-0.75_news_classification
40
+ ```
41
+ Prompts for the specific tasks can be found in the corresponding checkpoint directory. See an example below in the form of `models/elm-0.75_news_classification/example_prompts.json`.
42
+ ```json
43
+ {
44
+ "inputs": ["GM May Close Plant in Europe DETROIT (Reuters) - General Motors Corp. &lt;A HREF=\"http://www.investor.reuters.com/FullQuote.aspx?ticker=GM.N target=/stocks/quickinfo/fullquote\"&gt;GM.N&lt;/A&gt; will likely cut some jobs in Europe and may close a plant there as part of a restructuring plan under development to try to return the region to profitability, the U.S. automaker said on Wednesday."],
45
+ "template": "[INST]Below is a news article. Please classify it under one of the following classes (World, Business, Sports, Sci/Tech). Please format your response as a JSON payload.\n\n### Article: {input}\n\n### JSON Response:[/INST]"
46
+ }
47
+ ```
48
+
49
+ Running the above command returns the following response
50
+
51
+ ```json
52
+ {
53
+ "prompt": "[INST]Below is a news article. Please classify it under one of the following classes (World, Business, Sports, Sci/Tech). Please format your response as a JSON payload.\n\n### Article: GM May Close Plant in Europe DETROIT (Reuters) - General Motors Corp. &lt;A HREF=\"http://www.investor.reuters.com/FullQuote.aspx?ticker=GM.N target=/stocks/quickinfo/fullquote\"&gt;GM.N&lt;/A&gt; will likely cut some jobs in Europe and may close a plant there as part of a restructuring plan under development to try to return the region to profitability, the U.S. automaker said on Wednesday.\n\n### JSON Response:[/INST]",
54
+ "response": "{'text_label': 'Business'}"
55
+ }
56
+ ```
elm/infer_elm.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, SliceX AI, Inc. All Rights Reserved.
2
+
3
+ from elm.model import *
4
+ from elm.utils import batchify
5
+ from transformers import AutoTokenizer
6
+ import json
7
+
8
+
9
+ def load_elm_model_and_tokenizer(local_path,
10
+ model_config_dict,
11
+ device="cuda",
12
+ load_partial=True,
13
+ get_num_layers_from_ckpt=True):
14
+ """Load ELM model and tokenizer from local checkpoint."""
15
+ model_args = ModelArgs(**model_config_dict)
16
+ model = load_elm_model_from_ckpt(local_path, device=device, model_args=model_args, load_partial=load_partial, get_num_layers_from_ckpt=get_num_layers_from_ckpt)
17
+
18
+ tokenizer = AutoTokenizer.from_pretrained(local_path)
19
+ tokenizer.padding_side = "left"
20
+ tokenizer.truncation_side = "left"
21
+ return model, tokenizer
22
+
23
+
24
+ def generate_elm_response_given_model(prompts, model, tokenizer,
25
+ device="cuda",
26
+ max_ctx_word_len=1024,
27
+ max_ctx_token_len=0,
28
+ max_new_tokens=500,
29
+ temperature=0.8, # set to 0 for greedy decoding
30
+ top_k=200,
31
+ return_tok_cnt=False,
32
+ return_gen_only=False,
33
+ early_stop_on_eos=False):
34
+ """Generate responses from ELM model given an input list of prompts ([str])."""
35
+ if max_ctx_token_len > 0:
36
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True, max_length=max_ctx_token_len).to(device)
37
+ else:
38
+ prompts = [" ".join(p.split(" ")[-max_ctx_word_len:]) for p in prompts]
39
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
40
+
41
+ results = []
42
+
43
+ input_tok_cnt = torch.numel(inputs.input_ids)
44
+
45
+ model.eval()
46
+
47
+ out_tok_cnt = 0
48
+ with torch.no_grad():
49
+ temperature = temperature
50
+ top_k = top_k
51
+
52
+ outputs = model.generate(inputs.input_ids, max_new_tokens, temperature=temperature, top_k=top_k,
53
+ return_gen_only=return_gen_only)
54
+
55
+ if return_tok_cnt:
56
+ out_tok_cnt += torch.numel(outputs)
57
+
58
+ if early_stop_on_eos:
59
+ mod_outputs = []
60
+ for i in range(len(outputs)):
61
+ curr_out = outputs[i]
62
+
63
+ eos_loc_id = -1
64
+ for j in range(len(outputs[i])):
65
+ tok_id = outputs[i][j]
66
+ if tok_id == tokenizer.eos_token_id:
67
+ eos_loc_id = j
68
+ break
69
+ if eos_loc_id >= 0:
70
+ curr_out = outputs[i][:eos_loc_id]
71
+ mod_outputs.append(curr_out)
72
+ outputs = mod_outputs
73
+ detokenized_output = tokenizer.batch_decode(outputs, skip_special_tokens=False)
74
+
75
+ results = detokenized_output
76
+
77
+ if return_tok_cnt:
78
+ return results, (input_tok_cnt, out_tok_cnt)
79
+
80
+ return results
81
+
82
+ def generate_elm_responses(elm_model_path,
83
+ prompts,
84
+ device=None,
85
+ elm_model_config={},
86
+ eval_batch_size=1,
87
+ verbose=True):
88
+
89
+
90
+ if not device:
91
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
92
+ print(f"Setting device to {device}")
93
+
94
+ model_config_dict = {
95
+ "hidden_size": elm_model_config.get("hidden_size", 2048),
96
+ "max_inp_len": elm_model_config.get("max_inp_len", 2048),
97
+ "num_attention_heads": elm_model_config.get("num_attention_heads", 32),
98
+ "num_layers": elm_model_config.get("num_layers", 48),
99
+ "bits": elm_model_config.get("bits", 256),
100
+ "vocab_size": elm_model_config.get("vocab_size", 50304),
101
+ "dropout": elm_model_config.get("dropout", 0.1),
102
+ "use_rotary_embeddings": elm_model_config.get("use_rotary_embeddings", True)
103
+ }
104
+
105
+ model, tokenizer = load_elm_model_and_tokenizer(local_path=elm_model_path, model_config_dict=model_config_dict, device=device, load_partial=True)
106
+
107
+ #prompts = [prompt if "[INST]" in prompt else f"[INST]{prompt}[/INST]" for prompt in prompts]
108
+ max_new_tokens = 128
109
+ if "classification" in elm_model_path or "detection" in elm_model_path:
110
+ max_new_tokens = 12
111
+ result = []
112
+ for prompt_batch in batchify(prompts, eval_batch_size):
113
+ responses, _ = generate_elm_response_given_model(prompt_batch,
114
+ model,
115
+ tokenizer,
116
+ device=device,
117
+ max_ctx_word_len=1024,
118
+ max_ctx_token_len=512,
119
+ max_new_tokens=max_new_tokens,
120
+ return_tok_cnt=True,
121
+ return_gen_only=False,
122
+ temperature=0.0,
123
+ early_stop_on_eos=True)
124
+
125
+ for prompt, response in zip(prompt_batch, responses):
126
+ response = response.split("[/INST]")[-1].strip()
127
+ result.append(response)
128
+ if verbose:
129
+ print(json.dumps({"prompt": prompt, "response": response}, indent=4))
130
+ print("\n***\n")
131
+ return result
132
+
elm/model.py ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, SliceX AI, Inc. All Rights Reserved.
2
+
3
+ import copy
4
+ import inspect
5
+ import math
6
+ import numpy as np
7
+ import os
8
+
9
+ from dataclasses import dataclass, field
10
+ from typing import List, Optional
11
+
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+
16
+ from elm.utils import *
17
+ from elm.positional_embeddings import *
18
+
19
+
20
+ def get_elm_model_map(model_name):
21
+ """Map the model type to corresponding class."""
22
+ elm_model_map = {
23
+ "rambutan": RambutanSlice,
24
+ }
25
+
26
+ return elm_model_map.get(model_name, RambutanSlice)
27
+
28
+
29
+ @dataclass
30
+ class ModelArgs:
31
+ """ELM Model Args"""
32
+ model_name_or_path: str = "ELM"
33
+ compile_model: bool = False
34
+ elm_model_class: Optional[str] = "rambutan"
35
+ hidden_size: Optional[int] = 2048
36
+ max_inp_len: Optional[int] = 2048
37
+ attn_window_size: Optional[int] = max_inp_len
38
+ num_attention_heads: Optional[int] = 32
39
+ layernorm_eps: float = 1e-5
40
+ attention_dropout: float = 0.1
41
+ hidden_dropout: float = 0.1
42
+ num_layers: Optional[int] = 16
43
+ bits: Optional[int] = 256
44
+ vocab_size: Optional[int] = 50304
45
+ dropout: Optional[int] = 0.1
46
+ use_rotary_embeddings: Optional[bool] = True
47
+ tokenizer: Optional[str] = None
48
+
49
+
50
+ class ELM(torch.nn.Module):
51
+ """ELM (SliceX GPT) model."""
52
+ def __init__(self,
53
+ model_args: ModelArgs):
54
+ """Initialize an ELM model instance."""
55
+ super().__init__()
56
+
57
+ self.model_args = model_args
58
+
59
+ elm_model_class = model_args.elm_model_class
60
+ hidden_size = model_args.hidden_size
61
+ max_inp_len = model_args.max_inp_len
62
+ num_attention_heads = model_args.num_attention_heads
63
+ layernorm_eps = model_args.layernorm_eps
64
+ attention_dropout = model_args.attention_dropout
65
+ hidden_dropout = model_args.hidden_dropout
66
+ num_layers = model_args.num_layers
67
+ bits = model_args.bits
68
+ vocab_size = model_args.vocab_size
69
+ use_rotary_embeddings = model_args.use_rotary_embeddings
70
+
71
+ layer_class = get_elm_model_map(elm_model_class)
72
+
73
+ self.slice_transformer = torch.nn.ModuleDict(dict(
74
+ temb = torch.nn.Embedding(vocab_size, hidden_size),
75
+ pemb = torch.nn.Embedding(max_inp_len, hidden_size) if not use_rotary_embeddings else None,
76
+ drop = torch.nn.Dropout(hidden_dropout),
77
+ h = torch.nn.ModuleList([ layer_class(model_args=model_args) for _ in range(num_layers) ]),
78
+ ln_f = torch.nn.LayerNorm(hidden_size, eps=layernorm_eps),
79
+ ))
80
+
81
+ self.lm_head = torch.nn.Linear(hidden_size, vocab_size, bias=False)
82
+
83
+ print("Number of model parameters: %.2fM" % (self.get_num_params(False)/1e6,))
84
+
85
+
86
+ def forward(self,
87
+ x: torch.Tensor,
88
+ attention_mask: Optional[torch.Tensor] = None,
89
+ targets: Optional[torch.Tensor] = None):
90
+ device = x.device
91
+ batch, seqlen = x.size()
92
+
93
+
94
+ tok_emb = self.slice_transformer.temb(x)
95
+
96
+ if not self.model_args.use_rotary_embeddings:
97
+ pos = torch.arange(0, seqlen, dtype=torch.long, device=device)
98
+ pos_emb = self.slice_transformer.pemb(pos)
99
+ x = self.slice_transformer.drop(tok_emb + pos_emb)
100
+ else:
101
+ x = self.slice_transformer.drop(tok_emb)
102
+
103
+ tlayer_id = 0
104
+ ignore_index_id = -100
105
+ loss = torch.zeros(1).to(device)
106
+ loss_denom = 0
107
+
108
+ for tlayer in self.slice_transformer.h:
109
+ x = tlayer(x, attention_mask=attention_mask)
110
+
111
+ tlayer_id += 1
112
+
113
+ x = self.slice_transformer.ln_f(x)
114
+
115
+ if targets is not None:
116
+ logits = self.lm_head(x)
117
+
118
+ shift_logits = logits[..., :-1, :].contiguous()
119
+ shift_targets = targets[..., 1:].contiguous()
120
+ curr_loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)),
121
+ shift_targets.view(-1),
122
+ ignore_index=ignore_index_id)
123
+ loss += curr_loss.float()
124
+ loss_denom += 1
125
+ else:
126
+ logits = self.lm_head(x[:, [-1], :])
127
+
128
+ loss = loss / loss_denom
129
+
130
+ return logits, loss
131
+
132
+
133
+ def get_num_params(self, non_embedding=True):
134
+ """
135
+ Return the number of parameters in the model.
136
+ For non-embedding count (default), the position embeddings get subtracted.
137
+ This assumes parameter tying between input and final layer embeddings. Oherwise
138
+ If there is no parameter sharing , set the flag to False to include parameters for both layers.
139
+ """
140
+ n_params = sum(p.numel() for p in self.parameters())
141
+ if non_embedding and not self.model_args.use_rotary_embeddings:
142
+ n_params -= self.slice_transformer.pemb.weight.numel()
143
+ return n_params
144
+
145
+
146
+ @torch.no_grad()
147
+ def generate(self, x, max_new_tokens, temperature=0.8, top_k=200, top_p=0.9,
148
+ return_gen_only=False):
149
+ max_inp_len = self.model_args.max_inp_len
150
+
151
+ for _ in range(max_new_tokens):
152
+ x_ctxt = x if x.size(1) <= max_inp_len else x[:, -max_inp_len:]
153
+
154
+ logits, _ = self(x_ctxt)
155
+
156
+ next_id = None
157
+
158
+ if temperature <= 0:
159
+ next_id = torch.argmax(logits, dim=-1)
160
+ else:
161
+ logits = logits[:, -1, :] / temperature
162
+
163
+ if top_k is not None:
164
+ v, k = torch.topk(logits, min(top_k, logits.size(-1)))
165
+ logits[logits < v[:, [-1]]] = -float('Inf')
166
+
167
+ probs = F.softmax(logits, dim=-1)
168
+
169
+ if top_p is None:
170
+ next_id = torch.multinomial(probs, num_samples=1)
171
+ else:
172
+ next_id = sample_top_p(probs, top_p)
173
+ x = torch.cat((x, next_id), dim=1)
174
+
175
+ if return_gen_only:
176
+ return x[:,-max_new_tokens:]
177
+
178
+ return x
179
+
180
+
181
+ class RambutanMLP(torch.nn.Module):
182
+ """RambutanMLP version of MLP module used in the ELM (SliceX GPT) Transformer block."""
183
+ def __init__(self, dim=768, bits=32, dropout = 0.0):
184
+ super(RambutanMLP, self).__init__()
185
+ self.dim = dim
186
+ self.bits = bits
187
+
188
+ self.dropout = torch.nn.Dropout(dropout)
189
+
190
+ self.A1_c_w = torch.nn.Linear(self.dim, self.bits, bias=True)
191
+
192
+ self.Hexperts = 4
193
+ self.Hexpertemb = torch.nn.Embedding(self.bits, self.dim)
194
+
195
+ self.expert_aggr = torch.nn.Linear(self.Hexperts, 1)
196
+
197
+
198
+ def forward(self, x):
199
+ h_c = torch.nn.functional.softmax(self.A1_c_w(x), dim=-1)
200
+
201
+ v, i = torch.topk(h_c, self.Hexperts)
202
+
203
+ if len(x.size()) < 3:
204
+ p = v.unsqueeze(-1).expand(-1,-1,self.dim)
205
+ else:
206
+ p = v.unsqueeze(-1).expand(-1,-1,-1,self.dim)
207
+
208
+ h_emb = p * self.Hexpertemb(i)
209
+
210
+ if len(x.size()) < 3:
211
+ out = self.expert_aggr(h_emb.transpose(1,2)).reshape(h_emb.size(0), -1)
212
+ else:
213
+ out = self.expert_aggr(h_emb.transpose(-2,-1)).reshape(x.size())
214
+
215
+ out = x * out
216
+ out = self.dropout(out)
217
+
218
+ return out
219
+
220
+
221
+ class RambutanSlice(torch.nn.Module):
222
+ """Rambutan version of ELM (SliceX GPT) Transformer block."""
223
+ def __init__(self,
224
+ model_args: ModelArgs):
225
+ super().__init__()
226
+
227
+ self.model_args = model_args
228
+
229
+ self.num_attention_heads = model_args.num_attention_heads
230
+ self.kv_channels = model_args.hidden_size // model_args.num_attention_heads
231
+ self.ln1 = torch.nn.LayerNorm(model_args.hidden_size, eps=model_args.layernorm_eps)
232
+ self.ln2 = torch.nn.LayerNorm(model_args.hidden_size, eps=model_args.layernorm_eps)
233
+ self.mlp = RambutanMLP(dim=model_args.hidden_size, bits=model_args.bits)
234
+ self.cattn = RambutanCausalSelfAttention(model_args=model_args)
235
+
236
+
237
+ def forward(self,
238
+ x: torch.Tensor,
239
+ attention_mask: torch.Tensor = None):
240
+ res = x
241
+
242
+ x = self.ln1(x)
243
+ x = self.cattn(x, attention_mask=attention_mask)
244
+
245
+ x = res + x
246
+ res = x
247
+ x = self.ln2(x)
248
+ x = self.mlp(x)
249
+
250
+ return x + res
251
+
252
+
253
+ class RambutanCausalSelfAttention(torch.nn.Module):
254
+ """Rambutan version of self-attention module used in the ELM (SliceX GPT) transformer block."""
255
+
256
+ def __init__(self,
257
+ model_args: ModelArgs):
258
+ super().__init__()
259
+
260
+ self.model_args = model_args
261
+
262
+ n_embd = model_args.hidden_size
263
+ n_head = model_args.num_attention_heads
264
+ bias = False
265
+ dropout = model_args.attention_dropout
266
+
267
+ assert n_embd % n_head == 0
268
+
269
+ self.c_attn = torch.nn.Linear(n_embd, 3 * n_embd, bias=bias)
270
+
271
+ self.c_proj = torch.nn.Linear(n_embd, n_embd, bias=bias)
272
+
273
+ self.attn_dropout = torch.nn.Dropout(dropout)
274
+ self.resid_dropout = torch.nn.Dropout(dropout)
275
+ self.n_head = n_head
276
+ self.n_embd = n_embd
277
+ self.dropout = dropout
278
+
279
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
280
+
281
+ if not self.flash:
282
+ print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
283
+ self.rotary_embeddings = (
284
+ RotaryEmbedding(n_embd // n_head) if model_args.use_rotary_embeddings else None
285
+ )
286
+
287
+
288
+ def forward(self, x, attention_mask: torch.Tensor = None):
289
+ B, T, C = x.size()
290
+ device = x.device
291
+
292
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
293
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
294
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
295
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
296
+
297
+ if self.rotary_embeddings:
298
+ q, k = self.rotary_embeddings(q=q, k=k)
299
+
300
+ is_causal = True
301
+ attn_mask = None
302
+
303
+ if attention_mask is not None:
304
+ att_mask_input = attention_mask
305
+ att_mask_input = att_mask_input.unsqueeze(-1).expand(B, T, T)
306
+
307
+ if is_causal:
308
+ att_mask_causal = torch.tril(torch.ones(T, T)).view(1,T,T).expand(B,T,T).to(device)
309
+ attn_mask = (att_mask_causal * att_mask_input)
310
+ else:
311
+ attn_mask = att_mask_input
312
+
313
+ attn_mask = attn_mask.unsqueeze(1).expand(B, self.n_head, T, T)
314
+ attn_mask.float().to(device)
315
+
316
+
317
+ if self.flash:
318
+ y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.dropout if self.training else 0, is_causal=True)
319
+ else:
320
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
321
+
322
+ if is_causal and attn_mask is None:
323
+ attn_mask = torch.tril(torch.ones(T, T)).view(1,T,T).expand(B,T,T).to(device)
324
+ attn_mask = attn_mask.unsqueeze(1).expand(B, self.n_head, T, T)
325
+
326
+ if attn_mask is not None:
327
+ att = att.masked_fill(attn_mask == 0, torch.finfo(att.dtype).min)
328
+
329
+ att = F.softmax(att, dim=-1)
330
+ att = self.attn_dropout(att)
331
+ y = att @ v
332
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
333
+
334
+ y = self.resid_dropout(self.c_proj(y))
335
+
336
+ return y
337
+
338
+
339
+ def init_elm_model(model_args=ModelArgs(), device="cuda", model_config_dict=None):
340
+ """Initialize ELM model using default or model_config parameters."""
341
+ if model_config_dict:
342
+ model_args = ModelArgs(**model_config_dict)
343
+
344
+ dtype = torch.bfloat16 if device=="cuda" and torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
345
+
346
+ model = ELM(model_args=model_args).to(dtype=dtype)
347
+
348
+ return model
349
+
350
+ def get_h_layers_in_ckpt(ckpt_state_dict,
351
+ layer_name_template = 'slice_transformer.h.{layer_num}.'):
352
+ num_layers_in_ckpt = 0
353
+ from collections import defaultdict
354
+ layer_wise_dict = defaultdict(lambda: defaultdict(list))
355
+
356
+ layer_num_found = True
357
+ while layer_num_found:
358
+ layer_num_found = False
359
+ for layer_name in ckpt_state_dict.keys():
360
+ if layer_name_template.format(layer_num=num_layers_in_ckpt) in layer_name:
361
+ layer_wise_dict[num_layers_in_ckpt][layer_name] = ckpt_state_dict[layer_name]
362
+ layer_num_found = True
363
+ num_layers_in_ckpt += 1
364
+ return layer_wise_dict
365
+
366
+ def load_elm_model_from_ckpt(ckpt_dir, device='cuda', load_partial=False, model_args=ModelArgs(), get_num_layers_from_ckpt=True):
367
+ """Load ELM model from local checkpoint."""
368
+ print(f"Loading ELM checkpoint from {ckpt_dir}")
369
+ ckpt_path = os.path.join(ckpt_dir, 'ckpt.pt')
370
+ checkpoint = torch.load(ckpt_path, map_location=device)
371
+
372
+ if get_num_layers_from_ckpt:
373
+ layer_name_template = 'slice_transformer.h.{layer_num}.'
374
+ ckpt_layer_wise_dict = get_h_layers_in_ckpt(checkpoint['model'],
375
+ layer_name_template = layer_name_template)
376
+ model_args.num_layers = len(ckpt_layer_wise_dict)
377
+ model = init_elm_model(model_args=model_args, device=device)
378
+ ckpt_state_dict = checkpoint['model']
379
+
380
+ unwanted_prefix = '_orig_mod.'
381
+ for k,v in list(ckpt_state_dict.items()):
382
+ if k.startswith(unwanted_prefix):
383
+ ckpt_state_dict[k[len(unwanted_prefix):]] = ckpt_state_dict.pop(k)
384
+
385
+ if load_partial:
386
+ mod_state_dict = model.state_dict()
387
+ for k,v in list(ckpt_state_dict.items()):
388
+ if k in mod_state_dict:
389
+ v_size = v.size()
390
+ mod_size = mod_state_dict[k].size()
391
+
392
+ if v_size == mod_size:
393
+ mod_state_dict[k] = v
394
+ else:
395
+ if len(v_size) == 1:
396
+ mod_state_dict[k][:v_size[-1]] = v
397
+ elif len(v_size) == 2:
398
+ mod_state_dict[k][:v_size[-2], :v_size[-1]] = v
399
+
400
+ ckpt_state_dict = mod_state_dict
401
+ load_status = model.load_state_dict(ckpt_state_dict)
402
+ print(load_status)
403
+ model.to(device)
404
+
405
+ return model
406
+
407
+
408
+ def sample_top_p(probs, threshold):
409
+ """Perform top-p sampling on probability distribution using a threshold."""
410
+ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
411
+ probs_sum = torch.cumsum(probs_sort, dim=-1)
412
+ mask = probs_sum - probs_sort > threshold
413
+ probs_sort[mask] = 0.0
414
+ probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
415
+ next_token = torch.multinomial(probs_sort, num_samples=1)
416
+ next_token = torch.gather(probs_idx, -1, next_token)
417
+
418
+ return next_token
elm/positional_embeddings.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Optional, Tuple
3
+
4
+
5
+ def rotate_half(x):
6
+ x1, x2 = x.chunk(2, dim=-1)
7
+ return torch.cat((-x2, x1), dim=-1)
8
+
9
+
10
+ @torch.jit.script
11
+ def apply_rotary_pos_emb(x, cos, sin):
12
+ # NOTE: This could probably be moved to Triton
13
+
14
+ # Handle a possible sequence length mismatch in between q and k
15
+ cos = cos[:, :, : x.shape[-2], :]
16
+ sin = sin[:, :, : x.shape[-2], :]
17
+
18
+ return (x * cos) + (rotate_half(x) * sin)
19
+
20
+
21
+ class RotaryEmbedding(torch.nn.Module):
22
+ """
23
+ Rotary position embeddings from RoFormer (Su et. al, 2021).
24
+ """
25
+
26
+ def __init__(self, dim_model: int, *_, **__):
27
+ super().__init__()
28
+ # Generate and save the inverse frequency buffer (non trainable)
29
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model))
30
+ self.register_buffer("inv_freq", inv_freq)
31
+
32
+ self._seq_len_cached = None
33
+ self._cos_cached = None
34
+ self._sin_cached = None
35
+
36
+ def update_cos_sin_tables(self, x, seq_dimension=1):
37
+ seq_len = x.shape[seq_dimension]
38
+
39
+ # Reset the tables if the sequence length has changed,
40
+ # or if we're on a new device (possibly due to tracing for instance)
41
+ if (
42
+ seq_len != self._seq_len_cached
43
+ or self._cos_cached.device != x.device
44
+ or self._cos_cached.dtype != x.dtype
45
+ ):
46
+ self._seq_len_cached = seq_len
47
+ t = torch.arange(
48
+ x.shape[seq_dimension], device=x.device, dtype=torch.float32
49
+ )
50
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
51
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
52
+
53
+ self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
54
+ self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)
55
+
56
+ return self._cos_cached, self._sin_cached
57
+
58
+ def forward(
59
+ self, q: torch.Tensor, k: torch.Tensor
60
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
61
+ self._cos_cached, self._sin_cached = self.update_cos_sin_tables(
62
+ k, seq_dimension=-2
63
+ )
64
+
65
+ return (
66
+ apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
67
+ apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
68
+ )
69
+
70
+
71
+ def __test_rope__():
72
+ dtype=torch.float16
73
+ batch=4
74
+ seqlen=2048
75
+ dim=4096
76
+ num_heads=32
77
+ dim_key_head=dim // num_heads
78
+
79
+ x=torch.randn(batch,seqlen,num_heads,dim_key_head).to(dtype=dtype).to('cuda')
80
+
81
+ rpe=RotaryEmbedding(dim_key_head).to(dtype=dtype).to('cuda')
82
+ q,k=rpe(q=x,k=x)
83
+
84
+
85
+ #__test_rope__()
86
+
elm/utils.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, SliceX AI, Inc. All Rights Reserved.
2
+
3
+ from prettytable import PrettyTable
4
+
5
+ def count_parameters(model):
6
+ """Count the number of parameters in the model."""
7
+ table = PrettyTable(["Modules", "Parameters"])
8
+ total_params = 0
9
+
10
+ for name, parameter in model.named_parameters():
11
+ if not parameter.requires_grad: continue
12
+ params = parameter.numel()
13
+ table.add_row([name, params])
14
+ total_params+=params
15
+
16
+ print(table)
17
+ print(f"Total Trainable Params: {total_params}")
18
+
19
+ return total_params
20
+
21
+
22
+ def batchify(lst, n):
23
+ """Divide a list into chunks of size n."""
24
+ return [lst[i:i + n] for i in range(0, len(lst), n)]
25
+
models/.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ “*.pt” filter=lfs diff=lfs merge=lfs -text
2
+ *.pt filter=lfs diff=lfs merge=lfs -text
models/elm-1.0_news_classification/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 50257
3
+ }
models/elm-1.0_news_classification/ckpt.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e13e37f2410fff36cb11e2cd3cbcc814a380bdbecc06967a34c0d035d52294a3
3
+ size 2124385874
models/elm-1.0_news_classification/example_prompts.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "inputs": [
3
+ "GM May Close Plant in Europe DETROIT (Reuters) - General Motors Corp. &lt;A HREF=\"http://www.investor.reuters.com/FullQuote.aspx?ticker=GM.N target=/stocks/quickinfo/fullquote\"&gt;GM.N&lt;/A&gt; will likely cut some jobs in Europe and may close a plant there as part of a restructuring plan under development to try to return the region to profitability, the U.S. automaker said on Wednesday.",
4
+ "Netflix, TiVo sign VoD alliance Netflix, the online DVD rental company, and TiVo yesterday said they will work together to deliver movies digitally down the wires, presumably specifically to the latter #39;s PVR equipment.",
5
+ "NBA Star Pippen Announces Retirement National Basketball Association star Scottie Pippen has announced his retirement from the game, leaving the Chicago Bulls team he helped lead to six NBA titles.",
6
+ "Radcliffe to Run in New York Marathon LONDON (Reuters) - World marathon record holder Paula Radcliffe believes she has put her failure at the Athens Olympics behind her after announcing on Tuesday that she will run in the New York marathon on November 7.",
7
+ "GE Says It's on Track for 2004, 2005 BOSTON (Reuters) - Diversified manufacturer General Electric Co. &lt;A HREF=\"http://www.investor.reuters.com/FullQuote.aspx?ticker=GE.N target=/stocks/quickinfo/fullquote\"&gt;GE.N&lt;/A&gt; said on Tuesday that it is on track to meet its full-year earnings forecast and to achieve double-digit gains in earnings per share in 2005.",
8
+ "Hyundai signs deal for China truck plant Hyundai Motor Co. said yesterday that it has signed an agreement with a Chinese company, Jianghuai Automobile Corp., to build a commercial vehicle and engine plant in China #39;s Anhui province.",
9
+ "Sprint is chock full of potential heros It would be nice to see this week #39;s 100-meter sprint as simply the best footrace of all time. We could witness four sub-10-second sprints for the first time ever. It would be nice to watch with raised eyebrows instead of furrowed ones. It ...",
10
+ "Clash of the unpredictables: WI-Pak tie What would happen when two of the worlds most talented and unpredictable sides rub shoulders and that too in an ICC Champions Trophy semi-final?"
11
+ ],
12
+ "template": "[INST]Below is a news article. Please classify it under one of the following classes (World, Business, Sports, Sci/Tech). Please format your response as a JSON payload.\n\n### Article: {input}\n\n### JSON Response:[/INST]"
13
+ }
models/elm-1.0_news_classification/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/elm-1.0_news_classification/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
models/elm-1.0_news_classification/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/elm-1.0_news_classification/tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "50256": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "50257": {
14
+ "content": "[PAD]",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "<|endoftext|>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "<|endoftext|>",
25
+ "errors": "replace",
26
+ "model_max_length": 1024,
27
+ "pad_token": "[PAD]",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "<|endoftext|>"
30
+ }
models/elm-1.0_news_classification/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ transformers
run.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ from elm.infer_elm import generate_elm_responses
5
+
6
+ parser = argparse.ArgumentParser(description='run prompts with elm model.')
7
+ parser.add_argument('elm_model_path', help='Path to the elm_model_path')
8
+
9
+
10
+ def get_prompt_config_file(elm_model_path):
11
+ return os.path.join(elm_model_path, "example_prompts.json")
12
+
13
+ def run(elm_model_path: str):
14
+ prompt_config_file = get_prompt_config_file(elm_model_path)
15
+
16
+ with open(prompt_config_file, "r") as f:
17
+ prompt_info = json.load(f)
18
+ prompts = [prompt_info["template"].format(input=input) for input in prompt_info["inputs"]]
19
+ print(f"Loaded prompts from: {prompt_config_file}")
20
+ generate_elm_responses(elm_model_path, prompts, verbose=True)
21
+
22
+ if __name__ == "__main__":
23
+ args = parser.parse_args()
24
+ run(args.elm_model_path)