flan-t5-base-squad2 / README.md
sjrhuschlee's picture
Update README.md
039280c
|
raw
history blame
3.62 kB
---
license: mit
datasets:
- squad_v2
- squad
language:
- en
library_name: transformers
pipeline_tag: question-answering
tags:
- question-answering
- squad
- squad_v2
- t5
---
# flan-t5-base for Extractive QA
This is the [flan-t5-base](https://huggingface.co/google/flan-t5-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
**NOTE:** The `<cls>` token must be manually added to the beginning of the question for this model to work properly.
It uses the `<cls>` token to be able to make "no answer" predictions.
The t5 tokenizer does not automatically add this special token which is why it is added manually.
## Overview
**Language model:** flan-t5-base
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Infrastructure**: 1x NVIDIA 3070
## Model Usage
```python
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/flan-t5-base-squad2"
# a) Using pipelines
nlp = pipeline(
'question-answering',
model=model_name,
tokenizer=model_name,
trust_remote_code=True,
)
qa_input = {
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?'
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.980, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"],
return_dict=False
)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
```
## Metrics
```bash
# Squad v2
{
"eval_HasAns_exact": 79.97638326585695,
"eval_HasAns_f1": 86.1444296592862,
"eval_HasAns_total": 5928,
"eval_NoAns_exact": 84.42388561816652,
"eval_NoAns_f1": 84.42388561816652,
"eval_NoAns_total": 5945,
"eval_best_exact": 82.2033184536343,
"eval_best_exact_thresh": 0.0,
"eval_best_f1": 85.28292588395921,
"eval_best_f1_thresh": 0.0,
"eval_exact": 82.2033184536343,
"eval_f1": 85.28292588395928,
"eval_runtime": 522.0299,
"eval_samples": 12001,
"eval_samples_per_second": 22.989,
"eval_steps_per_second": 0.96,
"eval_total": 11873
}
# Squad
{
"eval_exact_match": 86.3197729422895,
"eval_f1": 92.94686836210295,
"eval_runtime": 442.1088,
"eval_samples": 10657,
"eval_samples_per_second": 24.105,
"eval_steps_per_second": 1.007
}
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
### Training results
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3