|
--- |
|
license: mit |
|
datasets: |
|
- squad_v2 |
|
- squad |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: question-answering |
|
tags: |
|
- question-answering |
|
- squad |
|
- squad_v2 |
|
- t5 |
|
--- |
|
|
|
# flan-t5-base for Extractive QA |
|
|
|
This is the [flan-t5-base](https://huggingface.co/google/flan-t5-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
**NOTE:** The `<cls>` token must be manually added to the beginning of the question for this model to work properly. |
|
It uses the `<cls>` token to be able to make "no answer" predictions. |
|
The t5 tokenizer does not automatically add this special token which is why it is added manually. |
|
|
|
## Overview |
|
**Language model:** flan-t5-base |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x NVIDIA 3070 |
|
|
|
## Model Usage |
|
```python |
|
import torch |
|
from transformers import( |
|
AutoModelForQuestionAnswering, |
|
AutoTokenizer, |
|
pipeline |
|
) |
|
model_name = "sjrhuschlee/flan-t5-base-squad2" |
|
|
|
# a) Using pipelines |
|
nlp = pipeline( |
|
'question-answering', |
|
model=model_name, |
|
tokenizer=model_name, |
|
trust_remote_code=True, |
|
) |
|
qa_input = { |
|
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?' |
|
'context': 'My name is Sarah and I live in London' |
|
} |
|
res = nlp(qa_input) |
|
# {'score': 0.980, 'start': 30, 'end': 37, 'answer': ' London'} |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?' |
|
context = 'My name is Sarah and I live in London' |
|
encoding = tokenizer(question, context, return_tensors="pt") |
|
start_scores, end_scores = model( |
|
encoding["input_ids"], |
|
attention_mask=encoding["attention_mask"], |
|
return_dict=False |
|
) |
|
|
|
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) |
|
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] |
|
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) |
|
# 'London' |
|
``` |
|
|
|
## Metrics |
|
|
|
```bash |
|
# Squad v2 |
|
{ |
|
"eval_HasAns_exact": 79.97638326585695, |
|
"eval_HasAns_f1": 86.1444296592862, |
|
"eval_HasAns_total": 5928, |
|
"eval_NoAns_exact": 84.42388561816652, |
|
"eval_NoAns_f1": 84.42388561816652, |
|
"eval_NoAns_total": 5945, |
|
"eval_best_exact": 82.2033184536343, |
|
"eval_best_exact_thresh": 0.0, |
|
"eval_best_f1": 85.28292588395921, |
|
"eval_best_f1_thresh": 0.0, |
|
"eval_exact": 82.2033184536343, |
|
"eval_f1": 85.28292588395928, |
|
"eval_runtime": 522.0299, |
|
"eval_samples": 12001, |
|
"eval_samples_per_second": 22.989, |
|
"eval_steps_per_second": 0.96, |
|
"eval_total": 11873 |
|
} |
|
|
|
# Squad |
|
{ |
|
"eval_exact_match": 86.3197729422895, |
|
"eval_f1": 92.94686836210295, |
|
"eval_runtime": 442.1088, |
|
"eval_samples": 10657, |
|
"eval_samples_per_second": 24.105, |
|
"eval_steps_per_second": 1.007 |
|
} |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 6 |
|
- total_train_batch_size: 96 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|