sjrhuschlee
commited on
Commit
路
e517659
1
Parent(s):
a8a5daa
Update README.md
Browse files
README.md
CHANGED
@@ -12,4 +12,43 @@ tags:
|
|
12 |
- question-answering
|
13 |
- squad
|
14 |
- squad_v2
|
15 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
- question-answering
|
13 |
- squad
|
14 |
- squad_v2
|
15 |
+
---
|
16 |
+
|
17 |
+
# deberta-v3-large for Extractive QA
|
18 |
+
|
19 |
+
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
20 |
+
|
21 |
+
## Overview
|
22 |
+
**Language model:** deberta-v3-large
|
23 |
+
**Language:** English
|
24 |
+
**Downstream-task:** Extractive QA
|
25 |
+
**Training data:** SQuAD 2.0
|
26 |
+
**Eval data:** SQuAD 2.0
|
27 |
+
**Infrastructure**: 1x NVIDIA 3070
|
28 |
+
|
29 |
+
## Model Usage
|
30 |
+
|
31 |
+
### Using with Peft
|
32 |
+
```python
|
33 |
+
from peft import LoraConfig, PeftModelForQuestionAnswering
|
34 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
35 |
+
model_name = "sjrhuschlee/deberta-v3-large-squad2"
|
36 |
+
```
|
37 |
+
|
38 |
+
### Using the Merged Model
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
41 |
+
model_name = "sjrhuschlee/deberta-v3-large-squad2"
|
42 |
+
|
43 |
+
# a) Using pipelines
|
44 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
45 |
+
qa_input = {
|
46 |
+
'question': 'Where do I live?',
|
47 |
+
'context': 'My name is Sarah and I live in London'
|
48 |
+
}
|
49 |
+
res = nlp(qa_input)
|
50 |
+
|
51 |
+
# b) Load model & tokenizer
|
52 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
+
```
|