|
--- |
|
language: |
|
- en |
|
license: mit |
|
library_name: transformers |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
- question-answering |
|
- squad |
|
- squad_v2 |
|
- mrqa |
|
- synQA |
|
- adversarial_qa |
|
datasets: |
|
- squad_v2 |
|
- squad |
|
- mrqa |
|
- mbartolo/synQA |
|
- UCLNLP/adversarial_qa |
|
- newsqa |
|
- trivia_qa |
|
- search_qa |
|
- hotpot_qa |
|
- natural_questions |
|
pipeline_tag: question-answering |
|
base_model: microsoft/deberta-v3-base |
|
model-index: |
|
- name: sjrhuschlee/deberta-v3-base-squad2-ext-v1 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 79.483 |
|
name: Exact Match |
|
- type: f1 |
|
value: 82.343 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 87.985 |
|
name: Exact Match |
|
- type: f1 |
|
value: 93.651 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: adversarial_qa |
|
type: adversarial_qa |
|
config: adversarialQA |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 47.533 |
|
name: Exact Match |
|
- type: f1 |
|
value: 59.838 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_adversarial |
|
type: squad_adversarial |
|
config: AddOneSent |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 84.723 |
|
name: Exact Match |
|
- type: f1 |
|
value: 89.78 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts amazon |
|
type: squadshifts |
|
config: amazon |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 74.851 |
|
name: Exact Match |
|
- type: f1 |
|
value: 87.448 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts new_wiki |
|
type: squadshifts |
|
config: new_wiki |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 83.396 |
|
name: Exact Match |
|
- type: f1 |
|
value: 91.996 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts nyt |
|
type: squadshifts |
|
config: nyt |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 83.934 |
|
name: Exact Match |
|
- type: f1 |
|
value: 92.234 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts reddit |
|
type: squadshifts |
|
config: reddit |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 75.008 |
|
name: Exact Match |
|
- type: f1 |
|
value: 86.12 |
|
name: F1 |
|
--- |
|
|
|
# deberta-v3-base for Extractive QA |
|
|
|
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the SQuAD 2.0, MRQA, AdversarialQA, and SynQA datasets. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
## Overview |
|
**Language model:** deberta-v3-base |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0, MRQA, AdversarialQA, SynQA |
|
**Eval data:** SQuAD 2.0 |
|
**Infrastructure**: 1x NVIDIA 3070 |
|
|
|
## Model Usage |
|
```python |
|
import torch |
|
from transformers import( |
|
AutoModelForQuestionAnswering, |
|
AutoTokenizer, |
|
pipeline |
|
) |
|
model_name = "sjrhuschlee/deberta-v3-base-squad2-ext-v1" |
|
|
|
# a) Using pipelines |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
qa_input = { |
|
'question': 'Where do I live?', |
|
'context': 'My name is Sarah and I live in London' |
|
} |
|
res = nlp(qa_input) |
|
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'} |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
question = 'Where do I live?' |
|
context = 'My name is Sarah and I live in London' |
|
encoding = tokenizer(question, context, return_tensors="pt") |
|
start_scores, end_scores = model( |
|
encoding["input_ids"], |
|
attention_mask=encoding["attention_mask"], |
|
return_dict=False |
|
) |
|
|
|
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) |
|
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] |
|
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) |
|
# 'London' |
|
``` |
|
|
|
## Dataset Preparation |
|
|
|
The MRQA dataset was updated to fix some errors and formatting to work with the `run_qa.py` example script provided in the Hugging Face Transformers library. |
|
The changes included |
|
- Updating incorrect answer starts locations (usually off by a few characters) |
|
- Updating the answer text to exactly match the text found in the context |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 96 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3.0 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |