sionic-ai-v1 / README.md
sionic's picture
Create README.md
723b44a
|
raw
history blame
62.1 kB
---
tags:
- mteb
- feature-extraction
- sentence-similarity
model-index:
- name: v1
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 77.07462686567163
- type: ap
value: 40.56545526400157
- type: f1
value: 71.14615231582567
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.03617500000001
- type: ap
value: 89.68075993779713
- type: f1
value: 93.01941324029784
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.730000000000004
- type: f1
value: 47.17780812766083
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.963
- type: map_at_10
value: 57.289
- type: map_at_100
value: 57.813
- type: map_at_1000
value: 57.81699999999999
- type: map_at_3
value: 53.425999999999995
- type: map_at_5
value: 55.798
- type: mrr_at_1
value: 42.603
- type: mrr_at_10
value: 57.528999999999996
- type: mrr_at_100
value: 58.053999999999995
- type: mrr_at_1000
value: 58.058
- type: mrr_at_3
value: 53.639
- type: mrr_at_5
value: 56.018
- type: ndcg_at_1
value: 41.963
- type: ndcg_at_10
value: 65.038
- type: ndcg_at_100
value: 67.243
- type: ndcg_at_1000
value: 67.337
- type: ndcg_at_3
value: 57.218
- type: ndcg_at_5
value: 61.49400000000001
- type: precision_at_1
value: 41.963
- type: precision_at_10
value: 8.94
- type: precision_at_100
value: 0.989
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.736
- type: precision_at_5
value: 15.717999999999998
- type: recall_at_1
value: 41.963
- type: recall_at_10
value: 89.403
- type: recall_at_100
value: 98.933
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 68.208
- type: recall_at_5
value: 78.592
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 49.7119537244616
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.45461573320737
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.77183059365367
- type: mrr
value: 76.47836697005673
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.6676490140397
- type: cos_sim_spearman
value: 83.62479701399418
- type: euclidean_pearson
value: 83.77348388669043
- type: euclidean_spearman
value: 85.15254266808878
- type: manhattan_pearson
value: 83.82596617753741
- type: manhattan_spearman
value: 84.92783875287692
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.85714285714286
- type: f1
value: 87.84374773981708
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 42.02700557366043
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 38.19662622375156
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.83
- type: map_at_10
value: 44.035000000000004
- type: map_at_100
value: 45.49
- type: map_at_1000
value: 45.613
- type: map_at_3
value: 40.542
- type: map_at_5
value: 42.213
- type: mrr_at_1
value: 39.914
- type: mrr_at_10
value: 49.742999999999995
- type: mrr_at_100
value: 50.473
- type: mrr_at_1000
value: 50.514
- type: mrr_at_3
value: 47.043
- type: mrr_at_5
value: 48.603
- type: ndcg_at_1
value: 39.914
- type: ndcg_at_10
value: 50.432
- type: ndcg_at_100
value: 55.675
- type: ndcg_at_1000
value: 57.547000000000004
- type: ndcg_at_3
value: 45.33
- type: ndcg_at_5
value: 47.326
- type: precision_at_1
value: 39.914
- type: precision_at_10
value: 9.614
- type: precision_at_100
value: 1.522
- type: precision_at_1000
value: 0.197
- type: precision_at_3
value: 21.602
- type: precision_at_5
value: 15.308
- type: recall_at_1
value: 32.83
- type: recall_at_10
value: 62.824000000000005
- type: recall_at_100
value: 84.604
- type: recall_at_1000
value: 96.318
- type: recall_at_3
value: 47.991
- type: recall_at_5
value: 53.74
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 34.666000000000004
- type: map_at_10
value: 45.149
- type: map_at_100
value: 46.373
- type: map_at_1000
value: 46.505
- type: map_at_3
value: 41.973
- type: map_at_5
value: 43.876
- type: mrr_at_1
value: 43.248
- type: mrr_at_10
value: 51.346000000000004
- type: mrr_at_100
value: 51.903
- type: mrr_at_1000
value: 51.94800000000001
- type: mrr_at_3
value: 49.289
- type: mrr_at_5
value: 50.575
- type: ndcg_at_1
value: 43.248
- type: ndcg_at_10
value: 50.849999999999994
- type: ndcg_at_100
value: 54.836
- type: ndcg_at_1000
value: 56.821999999999996
- type: ndcg_at_3
value: 46.788000000000004
- type: ndcg_at_5
value: 48.901
- type: precision_at_1
value: 43.248
- type: precision_at_10
value: 9.51
- type: precision_at_100
value: 1.5
- type: precision_at_1000
value: 0.196
- type: precision_at_3
value: 22.548000000000002
- type: precision_at_5
value: 15.936
- type: recall_at_1
value: 34.666000000000004
- type: recall_at_10
value: 60.244
- type: recall_at_100
value: 77.03
- type: recall_at_1000
value: 89.619
- type: recall_at_3
value: 48.147
- type: recall_at_5
value: 54.19199999999999
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 42.317
- type: map_at_10
value: 55.084999999999994
- type: map_at_100
value: 56.081
- type: map_at_1000
value: 56.131
- type: map_at_3
value: 51.87199999999999
- type: map_at_5
value: 53.638
- type: mrr_at_1
value: 48.464
- type: mrr_at_10
value: 58.664
- type: mrr_at_100
value: 59.282999999999994
- type: mrr_at_1000
value: 59.307
- type: mrr_at_3
value: 56.426
- type: mrr_at_5
value: 57.799
- type: ndcg_at_1
value: 48.464
- type: ndcg_at_10
value: 60.939
- type: ndcg_at_100
value: 64.77000000000001
- type: ndcg_at_1000
value: 65.732
- type: ndcg_at_3
value: 55.769000000000005
- type: ndcg_at_5
value: 58.282000000000004
- type: precision_at_1
value: 48.464
- type: precision_at_10
value: 9.693
- type: precision_at_100
value: 1.248
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 24.89
- type: precision_at_5
value: 16.828000000000003
- type: recall_at_1
value: 42.317
- type: recall_at_10
value: 74.602
- type: recall_at_100
value: 90.943
- type: recall_at_1000
value: 97.617
- type: recall_at_3
value: 60.909
- type: recall_at_5
value: 67.172
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.854999999999997
- type: map_at_10
value: 37.508
- type: map_at_100
value: 38.576
- type: map_at_1000
value: 38.646
- type: map_at_3
value: 35.066
- type: map_at_5
value: 36.291000000000004
- type: mrr_at_1
value: 30.959999999999997
- type: mrr_at_10
value: 39.559
- type: mrr_at_100
value: 40.481
- type: mrr_at_1000
value: 40.536
- type: mrr_at_3
value: 37.288
- type: mrr_at_5
value: 38.463
- type: ndcg_at_1
value: 30.959999999999997
- type: ndcg_at_10
value: 42.403
- type: ndcg_at_100
value: 47.49
- type: ndcg_at_1000
value: 49.227
- type: ndcg_at_3
value: 37.599
- type: ndcg_at_5
value: 39.652
- type: precision_at_1
value: 30.959999999999997
- type: precision_at_10
value: 6.328
- type: precision_at_100
value: 0.9329999999999999
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 15.744
- type: precision_at_5
value: 10.667
- type: recall_at_1
value: 28.854999999999997
- type: recall_at_10
value: 55.539
- type: recall_at_100
value: 78.481
- type: recall_at_1000
value: 91.456
- type: recall_at_3
value: 42.302
- type: recall_at_5
value: 47.288999999999994
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.17
- type: map_at_10
value: 27.737000000000002
- type: map_at_100
value: 28.912
- type: map_at_1000
value: 29.029
- type: map_at_3
value: 25.038
- type: map_at_5
value: 26.478
- type: mrr_at_1
value: 23.632
- type: mrr_at_10
value: 32.614
- type: mrr_at_100
value: 33.578
- type: mrr_at_1000
value: 33.642
- type: mrr_at_3
value: 30.079
- type: mrr_at_5
value: 31.490000000000002
- type: ndcg_at_1
value: 23.632
- type: ndcg_at_10
value: 33.204
- type: ndcg_at_100
value: 38.805
- type: ndcg_at_1000
value: 41.508
- type: ndcg_at_3
value: 28.316999999999997
- type: ndcg_at_5
value: 30.459999999999997
- type: precision_at_1
value: 23.632
- type: precision_at_10
value: 6.007
- type: precision_at_100
value: 1.015
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 13.639999999999999
- type: precision_at_5
value: 9.776
- type: recall_at_1
value: 19.17
- type: recall_at_10
value: 45.247
- type: recall_at_100
value: 69.455
- type: recall_at_1000
value: 88.548
- type: recall_at_3
value: 31.55
- type: recall_at_5
value: 36.97
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.788
- type: map_at_10
value: 41.510000000000005
- type: map_at_100
value: 42.827
- type: map_at_1000
value: 42.936
- type: map_at_3
value: 38.454
- type: map_at_5
value: 40.116
- type: mrr_at_1
value: 37.247
- type: mrr_at_10
value: 46.976
- type: mrr_at_100
value: 47.797
- type: mrr_at_1000
value: 47.838
- type: mrr_at_3
value: 44.61
- type: mrr_at_5
value: 45.961999999999996
- type: ndcg_at_1
value: 37.247
- type: ndcg_at_10
value: 47.447
- type: ndcg_at_100
value: 52.711
- type: ndcg_at_1000
value: 54.663
- type: ndcg_at_3
value: 42.576
- type: ndcg_at_5
value: 44.832
- type: precision_at_1
value: 37.247
- type: precision_at_10
value: 8.441
- type: precision_at_100
value: 1.277
- type: precision_at_1000
value: 0.163
- type: precision_at_3
value: 20.019000000000002
- type: precision_at_5
value: 14.033000000000001
- type: recall_at_1
value: 30.788
- type: recall_at_10
value: 59.51499999999999
- type: recall_at_100
value: 81.317
- type: recall_at_1000
value: 93.88300000000001
- type: recall_at_3
value: 46.021
- type: recall_at_5
value: 51.791
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.671
- type: map_at_10
value: 37.088
- type: map_at_100
value: 38.482
- type: map_at_1000
value: 38.594
- type: map_at_3
value: 33.947
- type: map_at_5
value: 35.682
- type: mrr_at_1
value: 32.647999999999996
- type: mrr_at_10
value: 42.469
- type: mrr_at_100
value: 43.332
- type: mrr_at_1000
value: 43.387
- type: mrr_at_3
value: 39.916000000000004
- type: mrr_at_5
value: 41.382999999999996
- type: ndcg_at_1
value: 32.647999999999996
- type: ndcg_at_10
value: 43.013
- type: ndcg_at_100
value: 48.554
- type: ndcg_at_1000
value: 50.854
- type: ndcg_at_3
value: 37.987
- type: ndcg_at_5
value: 40.316
- type: precision_at_1
value: 32.647999999999996
- type: precision_at_10
value: 7.911
- type: precision_at_100
value: 1.2309999999999999
- type: precision_at_1000
value: 0.16
- type: precision_at_3
value: 18.151
- type: precision_at_5
value: 12.991
- type: recall_at_1
value: 26.671
- type: recall_at_10
value: 54.935
- type: recall_at_100
value: 78.387
- type: recall_at_1000
value: 93.997
- type: recall_at_3
value: 41.117
- type: recall_at_5
value: 47.211
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.19883333333333
- type: map_at_10
value: 37.64883333333333
- type: map_at_100
value: 38.861749999999994
- type: map_at_1000
value: 38.97366666666666
- type: map_at_3
value: 34.831999999999994
- type: map_at_5
value: 36.366083333333336
- type: mrr_at_1
value: 33.25125
- type: mrr_at_10
value: 41.90383333333333
- type: mrr_at_100
value: 42.75125
- type: mrr_at_1000
value: 42.80408333333334
- type: mrr_at_3
value: 39.58091666666667
- type: mrr_at_5
value: 40.919250000000005
- type: ndcg_at_1
value: 33.25125
- type: ndcg_at_10
value: 43.03475
- type: ndcg_at_100
value: 48.11583333333333
- type: ndcg_at_1000
value: 50.23949999999999
- type: ndcg_at_3
value: 38.373666666666665
- type: ndcg_at_5
value: 40.52941666666667
- type: precision_at_1
value: 33.25125
- type: precision_at_10
value: 7.442750000000001
- type: precision_at_100
value: 1.1699166666666667
- type: precision_at_1000
value: 0.15416666666666667
- type: precision_at_3
value: 17.556416666666667
- type: precision_at_5
value: 12.3295
- type: recall_at_1
value: 28.19883333333333
- type: recall_at_10
value: 54.61899999999999
- type: recall_at_100
value: 76.78066666666666
- type: recall_at_1000
value: 91.29883333333333
- type: recall_at_3
value: 41.69391666666667
- type: recall_at_5
value: 47.250083333333336
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.891
- type: map_at_10
value: 33.765
- type: map_at_100
value: 34.762
- type: map_at_1000
value: 34.855999999999995
- type: map_at_3
value: 31.813999999999997
- type: map_at_5
value: 32.925
- type: mrr_at_1
value: 30.368000000000002
- type: mrr_at_10
value: 36.85
- type: mrr_at_100
value: 37.681
- type: mrr_at_1000
value: 37.747
- type: mrr_at_3
value: 35.046
- type: mrr_at_5
value: 36.065999999999995
- type: ndcg_at_1
value: 30.368000000000002
- type: ndcg_at_10
value: 37.716
- type: ndcg_at_100
value: 42.529
- type: ndcg_at_1000
value: 44.769999999999996
- type: ndcg_at_3
value: 34.226
- type: ndcg_at_5
value: 35.933
- type: precision_at_1
value: 30.368000000000002
- type: precision_at_10
value: 5.736
- type: precision_at_100
value: 0.8789999999999999
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 14.519000000000002
- type: precision_at_5
value: 9.969
- type: recall_at_1
value: 26.891
- type: recall_at_10
value: 46.733999999999995
- type: recall_at_100
value: 68.696
- type: recall_at_1000
value: 85.085
- type: recall_at_3
value: 37.153000000000006
- type: recall_at_5
value: 41.396
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.184
- type: map_at_10
value: 26.717000000000002
- type: map_at_100
value: 27.863
- type: map_at_1000
value: 27.98
- type: map_at_3
value: 24.248
- type: map_at_5
value: 25.619999999999997
- type: mrr_at_1
value: 23.021
- type: mrr_at_10
value: 30.517
- type: mrr_at_100
value: 31.480000000000004
- type: mrr_at_1000
value: 31.549
- type: mrr_at_3
value: 28.194999999999997
- type: mrr_at_5
value: 29.573
- type: ndcg_at_1
value: 23.021
- type: ndcg_at_10
value: 31.501
- type: ndcg_at_100
value: 36.927
- type: ndcg_at_1000
value: 39.61
- type: ndcg_at_3
value: 27.058
- type: ndcg_at_5
value: 29.171999999999997
- type: precision_at_1
value: 23.021
- type: precision_at_10
value: 5.64
- type: precision_at_100
value: 0.97
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 12.572
- type: precision_at_5
value: 9.147
- type: recall_at_1
value: 19.184
- type: recall_at_10
value: 42.108000000000004
- type: recall_at_100
value: 66.438
- type: recall_at_1000
value: 85.309
- type: recall_at_3
value: 29.853
- type: recall_at_5
value: 35.228
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.516000000000002
- type: map_at_10
value: 37.16
- type: map_at_100
value: 38.329
- type: map_at_1000
value: 38.424
- type: map_at_3
value: 34.365
- type: map_at_5
value: 35.905
- type: mrr_at_1
value: 32.275999999999996
- type: mrr_at_10
value: 41.192
- type: mrr_at_100
value: 42.055
- type: mrr_at_1000
value: 42.111
- type: mrr_at_3
value: 38.682
- type: mrr_at_5
value: 40.044000000000004
- type: ndcg_at_1
value: 32.275999999999996
- type: ndcg_at_10
value: 42.573
- type: ndcg_at_100
value: 47.9
- type: ndcg_at_1000
value: 50.005
- type: ndcg_at_3
value: 37.536
- type: ndcg_at_5
value: 39.812
- type: precision_at_1
value: 32.275999999999996
- type: precision_at_10
value: 7.127
- type: precision_at_100
value: 1.107
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 16.947000000000003
- type: precision_at_5
value: 11.866
- type: recall_at_1
value: 27.516000000000002
- type: recall_at_10
value: 54.94
- type: recall_at_100
value: 78.011
- type: recall_at_1000
value: 92.66
- type: recall_at_3
value: 41.522
- type: recall_at_5
value: 46.989
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.052999999999997
- type: map_at_10
value: 33.847
- type: map_at_100
value: 35.555
- type: map_at_1000
value: 35.772999999999996
- type: map_at_3
value: 31.273
- type: map_at_5
value: 32.49
- type: mrr_at_1
value: 30.435000000000002
- type: mrr_at_10
value: 38.41
- type: mrr_at_100
value: 39.567
- type: mrr_at_1000
value: 39.62
- type: mrr_at_3
value: 36.265
- type: mrr_at_5
value: 37.342
- type: ndcg_at_1
value: 30.435000000000002
- type: ndcg_at_10
value: 39.579
- type: ndcg_at_100
value: 45.865
- type: ndcg_at_1000
value: 48.363
- type: ndcg_at_3
value: 35.545
- type: ndcg_at_5
value: 37.023
- type: precision_at_1
value: 30.435000000000002
- type: precision_at_10
value: 7.668
- type: precision_at_100
value: 1.518
- type: precision_at_1000
value: 0.24
- type: precision_at_3
value: 16.798
- type: precision_at_5
value: 11.858
- type: recall_at_1
value: 25.052999999999997
- type: recall_at_10
value: 50.160000000000004
- type: recall_at_100
value: 78.313
- type: recall_at_1000
value: 93.697
- type: recall_at_3
value: 38.368
- type: recall_at_5
value: 42.568
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.445
- type: map_at_10
value: 32.185
- type: map_at_100
value: 33.091
- type: map_at_1000
value: 33.196999999999996
- type: map_at_3
value: 29.392000000000003
- type: map_at_5
value: 31.159
- type: mrr_at_1
value: 26.802
- type: mrr_at_10
value: 34.506
- type: mrr_at_100
value: 35.385
- type: mrr_at_1000
value: 35.449999999999996
- type: mrr_at_3
value: 32.132
- type: mrr_at_5
value: 33.731
- type: ndcg_at_1
value: 26.802
- type: ndcg_at_10
value: 36.76
- type: ndcg_at_100
value: 41.327999999999996
- type: ndcg_at_1000
value: 43.773
- type: ndcg_at_3
value: 31.752999999999997
- type: ndcg_at_5
value: 34.644000000000005
- type: precision_at_1
value: 26.802
- type: precision_at_10
value: 5.638
- type: precision_at_100
value: 0.839
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 13.247
- type: precision_at_5
value: 9.575
- type: recall_at_1
value: 24.445
- type: recall_at_10
value: 48.58
- type: recall_at_100
value: 69.69300000000001
- type: recall_at_1000
value: 87.397
- type: recall_at_3
value: 35.394
- type: recall_at_5
value: 42.455
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.441000000000003
- type: map_at_10
value: 29.369
- type: map_at_100
value: 31.339
- type: map_at_1000
value: 31.537
- type: map_at_3
value: 25.09
- type: map_at_5
value: 27.388
- type: mrr_at_1
value: 39.217999999999996
- type: mrr_at_10
value: 51.23799999999999
- type: mrr_at_100
value: 51.88
- type: mrr_at_1000
value: 51.905
- type: mrr_at_3
value: 48.426
- type: mrr_at_5
value: 49.986000000000004
- type: ndcg_at_1
value: 39.217999999999996
- type: ndcg_at_10
value: 38.987
- type: ndcg_at_100
value: 46.043
- type: ndcg_at_1000
value: 49.19
- type: ndcg_at_3
value: 33.426
- type: ndcg_at_5
value: 35.182
- type: precision_at_1
value: 39.217999999999996
- type: precision_at_10
value: 11.909
- type: precision_at_100
value: 1.9640000000000002
- type: precision_at_1000
value: 0.255
- type: precision_at_3
value: 24.973
- type: precision_at_5
value: 18.528
- type: recall_at_1
value: 17.441000000000003
- type: recall_at_10
value: 44.378
- type: recall_at_100
value: 68.377
- type: recall_at_1000
value: 85.67
- type: recall_at_3
value: 30.214999999999996
- type: recall_at_5
value: 36.094
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.922
- type: map_at_10
value: 22.095000000000002
- type: map_at_100
value: 32.196999999999996
- type: map_at_1000
value: 33.949
- type: map_at_3
value: 15.695999999999998
- type: map_at_5
value: 18.561
- type: mrr_at_1
value: 71.75
- type: mrr_at_10
value: 79.4
- type: mrr_at_100
value: 79.64
- type: mrr_at_1000
value: 79.645
- type: mrr_at_3
value: 77.792
- type: mrr_at_5
value: 79.00399999999999
- type: ndcg_at_1
value: 59.25
- type: ndcg_at_10
value: 45.493
- type: ndcg_at_100
value: 51.461
- type: ndcg_at_1000
value: 58.62500000000001
- type: ndcg_at_3
value: 50.038000000000004
- type: ndcg_at_5
value: 47.796
- type: precision_at_1
value: 71.75
- type: precision_at_10
value: 36.325
- type: precision_at_100
value: 12.068
- type: precision_at_1000
value: 2.2089999999999996
- type: precision_at_3
value: 53.25
- type: precision_at_5
value: 46.650000000000006
- type: recall_at_1
value: 9.922
- type: recall_at_10
value: 27.371000000000002
- type: recall_at_100
value: 58.36900000000001
- type: recall_at_1000
value: 81.43
- type: recall_at_3
value: 16.817
- type: recall_at_5
value: 21.179000000000002
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 54.665
- type: f1
value: 49.727174733557334
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 77.523
- type: map_at_10
value: 85.917
- type: map_at_100
value: 86.102
- type: map_at_1000
value: 86.115
- type: map_at_3
value: 84.946
- type: map_at_5
value: 85.541
- type: mrr_at_1
value: 83.678
- type: mrr_at_10
value: 90.24600000000001
- type: mrr_at_100
value: 90.278
- type: mrr_at_1000
value: 90.279
- type: mrr_at_3
value: 89.779
- type: mrr_at_5
value: 90.09700000000001
- type: ndcg_at_1
value: 83.678
- type: ndcg_at_10
value: 89.34100000000001
- type: ndcg_at_100
value: 89.923
- type: ndcg_at_1000
value: 90.14
- type: ndcg_at_3
value: 88.01400000000001
- type: ndcg_at_5
value: 88.723
- type: precision_at_1
value: 83.678
- type: precision_at_10
value: 10.687000000000001
- type: precision_at_100
value: 1.123
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 33.678000000000004
- type: precision_at_5
value: 20.771
- type: recall_at_1
value: 77.523
- type: recall_at_10
value: 95.48299999999999
- type: recall_at_100
value: 97.622
- type: recall_at_1000
value: 98.932
- type: recall_at_3
value: 91.797
- type: recall_at_5
value: 93.702
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.335
- type: map_at_10
value: 37.689
- type: map_at_100
value: 39.638
- type: map_at_1000
value: 39.805
- type: map_at_3
value: 33.099000000000004
- type: map_at_5
value: 35.563
- type: mrr_at_1
value: 45.525
- type: mrr_at_10
value: 54.07300000000001
- type: mrr_at_100
value: 54.736
- type: mrr_at_1000
value: 54.772
- type: mrr_at_3
value: 51.62
- type: mrr_at_5
value: 52.932
- type: ndcg_at_1
value: 45.525
- type: ndcg_at_10
value: 45.877
- type: ndcg_at_100
value: 52.428
- type: ndcg_at_1000
value: 55.089
- type: ndcg_at_3
value: 42.057
- type: ndcg_at_5
value: 43.067
- type: precision_at_1
value: 45.525
- type: precision_at_10
value: 12.67
- type: precision_at_100
value: 1.951
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 28.035
- type: precision_at_5
value: 20.525
- type: recall_at_1
value: 23.335
- type: recall_at_10
value: 53.047
- type: recall_at_100
value: 77.061
- type: recall_at_1000
value: 92.842
- type: recall_at_3
value: 38.182
- type: recall_at_5
value: 44.094
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.918
- type: map_at_10
value: 69.01
- type: map_at_100
value: 69.806
- type: map_at_1000
value: 69.853
- type: map_at_3
value: 65.594
- type: map_at_5
value: 67.77300000000001
- type: mrr_at_1
value: 83.83500000000001
- type: mrr_at_10
value: 88.804
- type: mrr_at_100
value: 88.912
- type: mrr_at_1000
value: 88.915
- type: mrr_at_3
value: 88.091
- type: mrr_at_5
value: 88.564
- type: ndcg_at_1
value: 83.83500000000001
- type: ndcg_at_10
value: 76.627
- type: ndcg_at_100
value: 79.269
- type: ndcg_at_1000
value: 80.122
- type: ndcg_at_3
value: 71.98
- type: ndcg_at_5
value: 74.64
- type: precision_at_1
value: 83.83500000000001
- type: precision_at_10
value: 16.005
- type: precision_at_100
value: 1.806
- type: precision_at_1000
value: 0.192
- type: precision_at_3
value: 46.544999999999995
- type: precision_at_5
value: 30.026000000000003
- type: recall_at_1
value: 41.918
- type: recall_at_10
value: 80.027
- type: recall_at_100
value: 90.29700000000001
- type: recall_at_1000
value: 95.901
- type: recall_at_3
value: 69.818
- type: recall_at_5
value: 75.064
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 93.70040000000002
- type: ap
value: 90.58039961008838
- type: f1
value: 93.696322976805
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 23.388
- type: map_at_10
value: 36.164
- type: map_at_100
value: 37.289
- type: map_at_1000
value: 37.336000000000006
- type: map_at_3
value: 32.208
- type: map_at_5
value: 34.482
- type: mrr_at_1
value: 23.997
- type: mrr_at_10
value: 36.779
- type: mrr_at_100
value: 37.839
- type: mrr_at_1000
value: 37.881
- type: mrr_at_3
value: 32.93
- type: mrr_at_5
value: 35.158
- type: ndcg_at_1
value: 23.997
- type: ndcg_at_10
value: 43.282
- type: ndcg_at_100
value: 48.637
- type: ndcg_at_1000
value: 49.754
- type: ndcg_at_3
value: 35.266999999999996
- type: ndcg_at_5
value: 39.305
- type: precision_at_1
value: 23.997
- type: precision_at_10
value: 6.821000000000001
- type: precision_at_100
value: 0.9490000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 15.004999999999999
- type: precision_at_5
value: 11.054
- type: recall_at_1
value: 23.388
- type: recall_at_10
value: 65.127
- type: recall_at_100
value: 89.753
- type: recall_at_1000
value: 98.173
- type: recall_at_3
value: 43.4
- type: recall_at_5
value: 53.071999999999996
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 95.16187870497038
- type: f1
value: 94.92465121683176
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 80.03191974464204
- type: f1
value: 61.33007652226683
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 79.09885675857431
- type: f1
value: 76.96223435507879
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 81.94687289845326
- type: f1
value: 81.72213346382495
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.23008400582387
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.38335563600822
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.52782587210441
- type: mrr
value: 32.7035429328629
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.845999999999999
- type: map_at_10
value: 14.63
- type: map_at_100
value: 18.345
- type: map_at_1000
value: 19.807
- type: map_at_3
value: 10.953
- type: map_at_5
value: 12.697
- type: mrr_at_1
value: 47.368
- type: mrr_at_10
value: 56.408
- type: mrr_at_100
value: 56.991
- type: mrr_at_1000
value: 57.02700000000001
- type: mrr_at_3
value: 54.747
- type: mrr_at_5
value: 55.846
- type: ndcg_at_1
value: 45.82
- type: ndcg_at_10
value: 36.732
- type: ndcg_at_100
value: 34.036
- type: ndcg_at_1000
value: 42.918
- type: ndcg_at_3
value: 42.628
- type: ndcg_at_5
value: 40.128
- type: precision_at_1
value: 47.368
- type: precision_at_10
value: 26.904
- type: precision_at_100
value: 8.334
- type: precision_at_1000
value: 2.111
- type: precision_at_3
value: 40.144000000000005
- type: precision_at_5
value: 34.489
- type: recall_at_1
value: 6.845999999999999
- type: recall_at_10
value: 18.232
- type: recall_at_100
value: 34.136
- type: recall_at_1000
value: 65.57
- type: recall_at_3
value: 11.759
- type: recall_at_5
value: 14.707999999999998
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.607
- type: map_at_10
value: 48.68
- type: map_at_100
value: 49.631
- type: map_at_1000
value: 49.653999999999996
- type: map_at_3
value: 44.174
- type: map_at_5
value: 46.865
- type: mrr_at_1
value: 36.79
- type: mrr_at_10
value: 51.156
- type: mrr_at_100
value: 51.856
- type: mrr_at_1000
value: 51.870000000000005
- type: mrr_at_3
value: 47.455999999999996
- type: mrr_at_5
value: 49.724000000000004
- type: ndcg_at_1
value: 36.79
- type: ndcg_at_10
value: 56.541
- type: ndcg_at_100
value: 60.465
- type: ndcg_at_1000
value: 61.013
- type: ndcg_at_3
value: 48.209
- type: ndcg_at_5
value: 52.644000000000005
- type: precision_at_1
value: 36.79
- type: precision_at_10
value: 9.27
- type: precision_at_100
value: 1.149
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 21.852
- type: precision_at_5
value: 15.672
- type: recall_at_1
value: 32.607
- type: recall_at_10
value: 77.957
- type: recall_at_100
value: 94.757
- type: recall_at_1000
value: 98.832
- type: recall_at_3
value: 56.61000000000001
- type: recall_at_5
value: 66.732
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.949
- type: map_at_10
value: 85.863
- type: map_at_100
value: 86.491
- type: map_at_1000
value: 86.505
- type: map_at_3
value: 83.043
- type: map_at_5
value: 84.8
- type: mrr_at_1
value: 82.93
- type: mrr_at_10
value: 88.716
- type: mrr_at_100
value: 88.805
- type: mrr_at_1000
value: 88.805
- type: mrr_at_3
value: 87.848
- type: mrr_at_5
value: 88.452
- type: ndcg_at_1
value: 82.94
- type: ndcg_at_10
value: 89.396
- type: ndcg_at_100
value: 90.523
- type: ndcg_at_1000
value: 90.596
- type: ndcg_at_3
value: 86.833
- type: ndcg_at_5
value: 88.225
- type: precision_at_1
value: 82.94
- type: precision_at_10
value: 13.522
- type: precision_at_100
value: 1.5350000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 38.019999999999996
- type: precision_at_5
value: 24.874
- type: recall_at_1
value: 71.949
- type: recall_at_10
value: 95.985
- type: recall_at_100
value: 99.705
- type: recall_at_1000
value: 99.982
- type: recall_at_3
value: 88.413
- type: recall_at_5
value: 92.532
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 58.50397537756067
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 65.09111585312182
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.328
- type: map_at_10
value: 14.025000000000002
- type: map_at_100
value: 16.403000000000002
- type: map_at_1000
value: 16.755
- type: map_at_3
value: 10.128
- type: map_at_5
value: 12.042
- type: mrr_at_1
value: 26.3
- type: mrr_at_10
value: 38.027
- type: mrr_at_100
value: 39.112
- type: mrr_at_1000
value: 39.15
- type: mrr_at_3
value: 34.433
- type: mrr_at_5
value: 36.437999999999995
- type: ndcg_at_1
value: 26.3
- type: ndcg_at_10
value: 22.904
- type: ndcg_at_100
value: 31.808999999999997
- type: ndcg_at_1000
value: 37.408
- type: ndcg_at_3
value: 22.017999999999997
- type: ndcg_at_5
value: 19.122
- type: precision_at_1
value: 26.3
- type: precision_at_10
value: 11.84
- type: precision_at_100
value: 2.471
- type: precision_at_1000
value: 0.38
- type: precision_at_3
value: 20.767
- type: precision_at_5
value: 16.84
- type: recall_at_1
value: 5.328
- type: recall_at_10
value: 24.0
- type: recall_at_100
value: 50.173
- type: recall_at_1000
value: 77.22200000000001
- type: recall_at_3
value: 12.652
- type: recall_at_5
value: 17.092
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.24083803725871
- type: cos_sim_spearman
value: 81.00003675131066
- type: euclidean_pearson
value: 81.66288190755017
- type: euclidean_spearman
value: 80.8591677979369
- type: manhattan_pearson
value: 81.65188499932559
- type: manhattan_spearman
value: 80.84969273926379
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.86245596720207
- type: cos_sim_spearman
value: 79.76982315849432
- type: euclidean_pearson
value: 84.08674590166918
- type: euclidean_spearman
value: 79.82960710579087
- type: manhattan_pearson
value: 84.05370633411236
- type: manhattan_spearman
value: 79.78889972125556
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.3103299403235
- type: cos_sim_spearman
value: 85.4504570470498
- type: euclidean_pearson
value: 84.78582379605986
- type: euclidean_spearman
value: 85.42627922874793
- type: manhattan_pearson
value: 84.72093039095986
- type: manhattan_spearman
value: 85.37545973987105
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 81.7811125755656
- type: cos_sim_spearman
value: 82.1418064552016
- type: euclidean_pearson
value: 81.76768854155489
- type: euclidean_spearman
value: 81.87925885994605
- type: manhattan_pearson
value: 81.73823381133532
- type: manhattan_spearman
value: 81.83848324852914
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 84.77170385298344
- type: cos_sim_spearman
value: 86.6995105881395
- type: euclidean_pearson
value: 86.09997193597131
- type: euclidean_spearman
value: 86.6691809576152
- type: manhattan_pearson
value: 86.05819223132623
- type: manhattan_spearman
value: 86.63909618446979
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.42286993921634
- type: cos_sim_spearman
value: 86.35209040752669
- type: euclidean_pearson
value: 85.42582334105671
- type: euclidean_spearman
value: 86.28412244758633
- type: manhattan_pearson
value: 85.43059107029272
- type: manhattan_spearman
value: 86.27090062806225
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.27814644680406
- type: cos_sim_spearman
value: 86.13269619051003
- type: euclidean_pearson
value: 86.43759619681596
- type: euclidean_spearman
value: 85.35609983837541
- type: manhattan_pearson
value: 86.56900966648851
- type: manhattan_spearman
value: 85.53334508807559
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.53522441640088
- type: cos_sim_spearman
value: 66.98460545542223
- type: euclidean_pearson
value: 68.14585405221024
- type: euclidean_spearman
value: 66.50486820484109
- type: manhattan_pearson
value: 68.07695653374543
- type: manhattan_spearman
value: 66.60229880909495
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 83.36210258340701
- type: cos_sim_spearman
value: 86.27961596583953
- type: euclidean_pearson
value: 85.05824596275431
- type: euclidean_spearman
value: 85.95626794662996
- type: manhattan_pearson
value: 85.08493690885169
- type: manhattan_spearman
value: 85.97991960000013
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 88.05926431433953
- type: mrr
value: 96.53995786348727
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.660999999999994
- type: map_at_10
value: 69.39999999999999
- type: map_at_100
value: 69.787
- type: map_at_1000
value: 69.82000000000001
- type: map_at_3
value: 66.43
- type: map_at_5
value: 67.989
- type: mrr_at_1
value: 63.0
- type: mrr_at_10
value: 70.509
- type: mrr_at_100
value: 70.792
- type: mrr_at_1000
value: 70.824
- type: mrr_at_3
value: 68.167
- type: mrr_at_5
value: 69.5
- type: ndcg_at_1
value: 63.0
- type: ndcg_at_10
value: 74.209
- type: ndcg_at_100
value: 75.74300000000001
- type: ndcg_at_1000
value: 76.423
- type: ndcg_at_3
value: 69.087
- type: ndcg_at_5
value: 71.42399999999999
- type: precision_at_1
value: 63.0
- type: precision_at_10
value: 9.966999999999999
- type: precision_at_100
value: 1.077
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 27.111
- type: precision_at_5
value: 17.8
- type: recall_at_1
value: 59.660999999999994
- type: recall_at_10
value: 87.922
- type: recall_at_100
value: 94.667
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 73.906
- type: recall_at_5
value: 80.094
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.87029702970297
- type: cos_sim_ap
value: 96.78080271162648
- type: cos_sim_f1
value: 93.33333333333333
- type: cos_sim_precision
value: 95.02590673575129
- type: cos_sim_recall
value: 91.7
- type: dot_accuracy
value: 99.6960396039604
- type: dot_ap
value: 91.07533824017564
- type: dot_f1
value: 84.41432720232332
- type: dot_precision
value: 81.80112570356472
- type: dot_recall
value: 87.2
- type: euclidean_accuracy
value: 99.87425742574257
- type: euclidean_ap
value: 96.82184426825803
- type: euclidean_f1
value: 93.52371239163692
- type: euclidean_precision
value: 95.42143600416233
- type: euclidean_recall
value: 91.7
- type: manhattan_accuracy
value: 99.87425742574257
- type: manhattan_ap
value: 96.84824127992334
- type: manhattan_f1
value: 93.5500253936008
- type: manhattan_precision
value: 95.04643962848297
- type: manhattan_recall
value: 92.10000000000001
- type: max_accuracy
value: 99.87425742574257
- type: max_ap
value: 96.84824127992334
- type: max_f1
value: 93.5500253936008
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 66.80646711150717
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 35.28773452906587
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.28585488417727
- type: mrr
value: 56.23835519056107
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.303110609843536
- type: cos_sim_spearman
value: 32.121313527446944
- type: dot_pearson
value: 28.14303657628762
- type: dot_spearman
value: 27.80000491563264
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.243
- type: map_at_10
value: 2.099
- type: map_at_100
value: 10.894
- type: map_at_1000
value: 24.587999999999997
- type: map_at_3
value: 0.6910000000000001
- type: map_at_5
value: 1.1039999999999999
- type: mrr_at_1
value: 90.0
- type: mrr_at_10
value: 94.5
- type: mrr_at_100
value: 94.5
- type: mrr_at_1000
value: 94.5
- type: mrr_at_3
value: 94.0
- type: mrr_at_5
value: 94.5
- type: ndcg_at_1
value: 87.0
- type: ndcg_at_10
value: 80.265
- type: ndcg_at_100
value: 57.371
- type: ndcg_at_1000
value: 49.147999999999996
- type: ndcg_at_3
value: 83.296
- type: ndcg_at_5
value: 82.003
- type: precision_at_1
value: 90.0
- type: precision_at_10
value: 85.0
- type: precision_at_100
value: 58.36
- type: precision_at_1000
value: 21.352
- type: precision_at_3
value: 87.333
- type: precision_at_5
value: 86.8
- type: recall_at_1
value: 0.243
- type: recall_at_10
value: 2.262
- type: recall_at_100
value: 13.919
- type: recall_at_1000
value: 45.251999999999995
- type: recall_at_3
value: 0.711
- type: recall_at_5
value: 1.162
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.334
- type: map_at_10
value: 11.221
- type: map_at_100
value: 18.207
- type: map_at_1000
value: 19.588
- type: map_at_3
value: 6.085
- type: map_at_5
value: 8.773
- type: mrr_at_1
value: 42.857
- type: mrr_at_10
value: 55.175
- type: mrr_at_100
value: 56.133
- type: mrr_at_1000
value: 56.133
- type: mrr_at_3
value: 51.019999999999996
- type: mrr_at_5
value: 53.878
- type: ndcg_at_1
value: 39.796
- type: ndcg_at_10
value: 27.533
- type: ndcg_at_100
value: 39.823
- type: ndcg_at_1000
value: 50.412
- type: ndcg_at_3
value: 32.558
- type: ndcg_at_5
value: 31.863000000000003
- type: precision_at_1
value: 42.857
- type: precision_at_10
value: 23.673
- type: precision_at_100
value: 8.184
- type: precision_at_1000
value: 1.522
- type: precision_at_3
value: 32.653
- type: precision_at_5
value: 31.429000000000002
- type: recall_at_1
value: 3.334
- type: recall_at_10
value: 16.645
- type: recall_at_100
value: 49.876
- type: recall_at_1000
value: 82.512
- type: recall_at_3
value: 6.763
- type: recall_at_5
value: 11.461
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 72.1264
- type: ap
value: 14.7287447276112
- type: f1
value: 55.46235112706406
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.07809847198642
- type: f1
value: 61.377630233653036
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 54.10055371858293
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.35769207844072
- type: cos_sim_ap
value: 78.4339038750439
- type: cos_sim_f1
value: 71.50245668476856
- type: cos_sim_precision
value: 70.10649087221095
- type: cos_sim_recall
value: 72.95514511873351
- type: dot_accuracy
value: 82.8396018358467
- type: dot_ap
value: 62.120847549876125
- type: dot_f1
value: 58.371350364963504
- type: dot_precision
value: 51.40618722378465
- type: dot_recall
value: 67.5197889182058
- type: euclidean_accuracy
value: 87.52458723252072
- type: euclidean_ap
value: 78.77453300254041
- type: euclidean_f1
value: 71.625
- type: euclidean_precision
value: 68.05225653206651
- type: euclidean_recall
value: 75.59366754617413
- type: manhattan_accuracy
value: 87.536508314955
- type: manhattan_ap
value: 78.75992501489914
- type: manhattan_f1
value: 71.6182364729459
- type: manhattan_precision
value: 68.16881258941345
- type: manhattan_recall
value: 75.4353562005277
- type: max_accuracy
value: 87.536508314955
- type: max_ap
value: 78.77453300254041
- type: max_f1
value: 71.625
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.48721232584313
- type: cos_sim_ap
value: 84.74350149247529
- type: cos_sim_f1
value: 76.55672345052554
- type: cos_sim_precision
value: 72.32570880701273
- type: cos_sim_recall
value: 81.3135201724669
- type: dot_accuracy
value: 84.74599293670198
- type: dot_ap
value: 75.44592372136103
- type: dot_f1
value: 69.34277843368751
- type: dot_precision
value: 64.76642384548553
- type: dot_recall
value: 74.61502925777641
- type: euclidean_accuracy
value: 88.52020025614158
- type: euclidean_ap
value: 85.01860042460612
- type: euclidean_f1
value: 76.97924816512052
- type: euclidean_precision
value: 74.57590413628817
- type: euclidean_recall
value: 79.54265475823837
- type: manhattan_accuracy
value: 88.51049792370085
- type: manhattan_ap
value: 85.03208810011937
- type: manhattan_f1
value: 77.0230840258541
- type: manhattan_precision
value: 74.01859870802868
- type: manhattan_recall
value: 80.28179858330768
- type: max_accuracy
value: 88.52020025614158
- type: max_ap
value: 85.03208810011937
- type: max_f1
value: 77.0230840258541
---