simonycl's picture
update model card README.md
ce2cf9b
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: best_model-sst-2-64-87
    results: []

best_model-sst-2-64-87

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2746
  • Accuracy: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 1.3247 0.8438
No log 2.0 8 1.3227 0.8438
0.7148 3.0 12 1.3195 0.8438
0.7148 4.0 16 1.3169 0.8359
0.6114 5.0 20 1.3149 0.8359
0.6114 6.0 24 1.3101 0.8359
0.6114 7.0 28 1.2982 0.8438
0.5794 8.0 32 1.2836 0.8438
0.5794 9.0 36 1.2655 0.8438
0.5231 10.0 40 1.2497 0.8438
0.5231 11.0 44 1.2410 0.8438
0.5231 12.0 48 1.2307 0.8438
0.4052 13.0 52 1.2154 0.8438
0.4052 14.0 56 1.2001 0.8438
0.363 15.0 60 1.1877 0.8438
0.363 16.0 64 1.1760 0.8516
0.363 17.0 68 1.1836 0.8516
0.2969 18.0 72 1.1848 0.8594
0.2969 19.0 76 1.1823 0.8516
0.1866 20.0 80 1.1867 0.8516
0.1866 21.0 84 1.1795 0.8516
0.1866 22.0 88 1.1756 0.8516
0.1502 23.0 92 1.1731 0.8516
0.1502 24.0 96 1.1680 0.8516
0.0974 25.0 100 1.1489 0.8516
0.0974 26.0 104 1.1088 0.8516
0.0974 27.0 108 1.0986 0.8594
0.0992 28.0 112 1.0879 0.8594
0.0992 29.0 116 1.0850 0.8594
0.0065 30.0 120 1.1056 0.8594
0.0065 31.0 124 1.1355 0.8516
0.0065 32.0 128 1.1457 0.8438
0.0185 33.0 132 1.1518 0.8438
0.0185 34.0 136 1.1437 0.8438
0.0123 35.0 140 1.1230 0.8516
0.0123 36.0 144 1.1109 0.8516
0.0123 37.0 148 1.1093 0.8594
0.0001 38.0 152 1.1085 0.8594
0.0001 39.0 156 1.1092 0.8594
0.008 40.0 160 1.1163 0.8594
0.008 41.0 164 1.1272 0.8516
0.008 42.0 168 1.1351 0.8516
0.0001 43.0 172 1.1365 0.8516
0.0001 44.0 176 1.1287 0.8516
0.0007 45.0 180 1.1195 0.8594
0.0007 46.0 184 1.1110 0.8594
0.0007 47.0 188 1.1261 0.8594
0.0003 48.0 192 1.1236 0.8594
0.0003 49.0 196 1.1083 0.8594
0.0018 50.0 200 1.1057 0.8594
0.0018 51.0 204 1.1077 0.8594
0.0018 52.0 208 1.1095 0.8516
0.0001 53.0 212 1.1116 0.8594
0.0001 54.0 216 1.1149 0.8594
0.0017 55.0 220 1.1500 0.8516
0.0017 56.0 224 1.1396 0.8516
0.0017 57.0 228 1.1474 0.8516
0.0002 58.0 232 1.1402 0.8594
0.0002 59.0 236 1.1367 0.8594
0.0001 60.0 240 1.1349 0.8516
0.0001 61.0 244 1.1350 0.8516
0.0001 62.0 248 1.1366 0.8516
0.0001 63.0 252 1.1389 0.8594
0.0001 64.0 256 1.1395 0.8594
0.0001 65.0 260 1.1380 0.8594
0.0001 66.0 264 1.1378 0.8594
0.0001 67.0 268 1.1411 0.8594
0.0001 68.0 272 1.1439 0.8594
0.0001 69.0 276 1.1452 0.8594
0.0122 70.0 280 1.1270 0.8594
0.0122 71.0 284 1.1514 0.8594
0.0122 72.0 288 1.1908 0.8516
0.0001 73.0 292 1.2155 0.8516
0.0001 74.0 296 1.2281 0.8516
0.0001 75.0 300 1.2353 0.8516
0.0001 76.0 304 1.2387 0.8516
0.0001 77.0 308 1.2380 0.8516
0.0177 78.0 312 1.1050 0.8594
0.0177 79.0 316 1.1201 0.8594
0.0123 80.0 320 1.1227 0.8516
0.0123 81.0 324 1.1249 0.8594
0.0123 82.0 328 1.1305 0.8594
0.0001 83.0 332 1.1371 0.8672
0.0001 84.0 336 1.1424 0.8672
0.0001 85.0 340 1.1449 0.8672
0.0001 86.0 344 1.1464 0.8672
0.0001 87.0 348 1.1469 0.8672
0.0001 88.0 352 1.1448 0.8594
0.0001 89.0 356 1.1444 0.8594
0.0 90.0 360 1.1452 0.8594
0.0 91.0 364 1.1464 0.8594
0.0 92.0 368 1.1484 0.8594
0.0001 93.0 372 1.1504 0.8594
0.0001 94.0 376 1.1521 0.8516
0.0 95.0 380 1.1537 0.8516
0.0 96.0 384 1.1553 0.8516
0.0 97.0 388 1.1571 0.8516
0.0001 98.0 392 1.1605 0.8594
0.0001 99.0 396 1.1645 0.8594
0.0 100.0 400 1.1678 0.8594
0.0 101.0 404 1.1706 0.8594
0.0 102.0 408 1.1729 0.8594
0.0 103.0 412 1.1747 0.8594
0.0 104.0 416 1.1762 0.8594
0.0001 105.0 420 1.1777 0.8594
0.0001 106.0 424 1.1792 0.8594
0.0001 107.0 428 1.1808 0.8594
0.0034 108.0 432 1.2561 0.8516
0.0034 109.0 436 1.3098 0.8516
0.0063 110.0 440 1.2197 0.8516
0.0063 111.0 444 1.1982 0.8516
0.0063 112.0 448 1.2230 0.8516
0.0 113.0 452 1.2172 0.8594
0.0 114.0 456 1.2165 0.8516
0.0 115.0 460 1.2187 0.8516
0.0 116.0 464 1.2213 0.8516
0.0 117.0 468 1.2234 0.8516
0.0 118.0 472 1.2248 0.8516
0.0 119.0 476 1.2267 0.8516
0.0 120.0 480 1.2288 0.8594
0.0 121.0 484 1.2316 0.8594
0.0 122.0 488 1.2342 0.8594
0.0 123.0 492 1.2364 0.8594
0.0 124.0 496 1.2436 0.8594
0.001 125.0 500 1.2770 0.8438
0.001 126.0 504 1.3138 0.8594
0.001 127.0 508 1.3084 0.8594
0.0 128.0 512 1.3102 0.8438
0.0 129.0 516 1.3333 0.8438
0.0002 130.0 520 1.3251 0.8516
0.0002 131.0 524 1.2928 0.8594
0.0002 132.0 528 1.2468 0.8438
0.0 133.0 532 1.2295 0.8438
0.0 134.0 536 1.2483 0.8438
0.0 135.0 540 1.2652 0.8438
0.0 136.0 544 1.2741 0.8438
0.0 137.0 548 1.2786 0.8438
0.0 138.0 552 1.2811 0.8438
0.0 139.0 556 1.2824 0.8438
0.0 140.0 560 1.2833 0.8438
0.0 141.0 564 1.2837 0.8438
0.0 142.0 568 1.2833 0.8438
0.0 143.0 572 1.2830 0.8438
0.0 144.0 576 1.2828 0.8438
0.0 145.0 580 1.2827 0.8438
0.0 146.0 584 1.2827 0.8438
0.0 147.0 588 1.2827 0.8438
0.0001 148.0 592 1.2786 0.8438
0.0001 149.0 596 1.2755 0.8438
0.0 150.0 600 1.2746 0.8438

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3