|
--- |
|
license: mit |
|
base_model: roberta-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-ivrmenu-entity |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-ivrmenu-entity |
|
|
|
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.8282 |
|
- Recall: 0.8911 |
|
- F1: 0.8585 |
|
- Accuracy: 0.9345 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 2 | nan | 0.9036 | 0.4950 | 0.6397 | 0.6503 | |
|
| No log | 2.0 | 4 | nan | 0.5952 | 0.5776 | 0.5863 | 0.7387 | |
|
| No log | 3.0 | 6 | nan | 0.7124 | 0.7030 | 0.7076 | 0.8232 | |
|
| No log | 4.0 | 8 | nan | 0.6879 | 0.7492 | 0.7172 | 0.8402 | |
|
| No log | 5.0 | 10 | nan | 0.7333 | 0.7987 | 0.7646 | 0.8880 | |
|
| No log | 6.0 | 12 | nan | 0.7462 | 0.8152 | 0.7792 | 0.9044 | |
|
| No log | 7.0 | 14 | nan | 0.7761 | 0.8350 | 0.8045 | 0.9142 | |
|
| No log | 8.0 | 16 | nan | 0.8145 | 0.8548 | 0.8341 | 0.9247 | |
|
| No log | 9.0 | 18 | nan | 0.8185 | 0.8779 | 0.8471 | 0.9306 | |
|
| No log | 10.0 | 20 | nan | 0.8282 | 0.8911 | 0.8585 | 0.9345 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.12.1 |
|
|