bakrianoo's picture
update citations referecnes
0eb85c3 verified
|
raw
history blame
13.3 kB
metadata
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - loss:CosineSimilarityLoss
model-index:
  - name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          config: ar-ar
          name: MTEB STS17 (ar-ar)
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: pearson_cosine
            value: 0.8515496450525244
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8558624740720275
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.821963706969713
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8396900657477299
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8231208177674895
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8444168331737782
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8515496381581389
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8557531503465841
            name: Spearman Dot
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          config: en-ar
          name: MTEB STS17 (en-ar)
          revision: faeb762787bd10488a50c8b5be4a3b82e411949c
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: pearson_cosine
            value: 0.4960250395119053
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4770240652715316
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.463401831917928
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4468968000990917
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.4481739880481376
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.428311112429714
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.49602504450181617
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4770240652715316
            name: Spearman Dot
license: apache-2.0
language:
  - ar
  - en

SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1

This is a sentence-transformers model finetuned from silma-ai/silma-embeddding-matryoshka-0.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: aubmindlab/bert-base-arabertv02
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then load the model

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")

Samples

[+] Short Sentence Similarity

Arabic

query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======

English

query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======

[+] Long Sentence Similarity

Arabic

query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======

English

query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======

[+] Question to Paragraph Matching

Arabic

query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======

English

query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======

[+] Message to Intent-Name Mapping

Arabic

query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======

English

query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"

query_embedding = model.encode(query)

print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())

# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8515
spearman_cosine 0.8559
pearson_manhattan 0.8220
spearman_manhattan 0.8397
pearson_euclidean 0.8231
spearman_euclidean 0.8444
pearson_dot 0.8515
spearman_dot 0.8557

Training Details

This model was fine-tuned via 2 phases:

Phase 1:

In phase 1, we curated a dataset silma-ai/silma-arabic-triplets-dataset-v1.0 which contains more than 2.25M records of (anchor, positive and negative) Arabic/English samples. Only the first 600 samples were taken to be the eval dataset, while the rest were used for fine-tuning.

Phase 1 produces a finetuned Matryoshka model based on aubmindlab/bert-base-arabertv02 with the following hyperparameters:

  • per_device_train_batch_size: 250
  • per_device_eval_batch_size: 10
  • learning_rate: 1e-05
  • num_train_epochs: 3
  • bf16: True
  • dataloader_drop_last: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

training script

Phase 2:

In phase 2, we curated a dataset silma-ai/silma-arabic-english-sts-dataset-v1.0 which contains more than 30k records of (sentence1, sentence2 and similarity-score) Arabic/English samples. Only the first 100 samples were taken to be the eval dataset, while the rest was used for fine-tuning.

Phase 2 produces a finetuned STS model based on the model from phase 1, with the following hyperparameters:

  • eval_strategy: steps
  • per_device_train_batch_size: 250
  • per_device_eval_batch_size: 10
  • learning_rate: 1e-06
  • num_train_epochs: 10
  • bf16: True
  • dataloader_drop_last: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

training script

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.2.0
  • Transformers: 4.45.2
  • PyTorch: 2.3.1
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.1

Citation:

BibTeX:

@misc{silma2024embedding,
  author = {Abu Bakr Soliman, Karim Ouda, Silma AI},
  title = {Silma Embedding STS 0.1},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/silma-ai/silma-embeddding-sts-0.1}},
}

APA:

Abu Bakr Soliman, Karim Ouda, Silma AI. (2024). Silma Embedding STS 0.1 [Model]. Hugging Face. https://huggingface.co/silma-ai/silma-embeddding-sts-0.1