sidleal's picture
End of training
6b0d8b8 verified
metadata
language:
  - pt
license: mit
base_model: RodrigoLimaRFL/distil-large-nurc-sp
tags:
  - generated_from_trainer
datasets:
  - sidleal/CORAA-MUPE-ASR-1
metrics:
  - wer
model-index:
  - name: CORAA-MUPE-ASR distil-whisper fine-tuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: CORAA-MUPE-ASR
          type: sidleal/CORAA-MUPE-ASR-1
          config: default
          split: validation
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 16.906779312781993

CORAA-MUPE-ASR distil-whisper fine-tuned

This model is a fine-tuned version of RodrigoLimaRFL/distil-large-nurc-sp on the CORAA-MUPE-ASR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3067
  • Wer: 16.9068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 18000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3322 0.1734 3000 0.3687 19.8514
0.3245 0.3467 6000 0.3466 18.9951
0.3021 0.5201 9000 0.3320 18.0409
0.2852 0.6934 12000 0.3220 18.0697
0.2819 0.8668 15000 0.3095 17.4081
0.2062 1.0402 18000 0.3067 16.9068

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1