sidleal's picture
End of training
87ab2bc verified
metadata
language:
  - pt
license: mit
base_model: RodrigoLimaRFL/distil-whisper-nurc-sp-fine-tuned
tags:
  - generated_from_trainer
datasets:
  - nilc-nlp/CORAA-MUPE-ASR
metrics:
  - wer
model-index:
  - name: CORAA-MUPE-ASR distil-whisper fine-tuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: CORAA-MUPE-ASR
          type: nilc-nlp/CORAA-MUPE-ASR
          config: default
          split: test
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.273584751709397

CORAA-MUPE-ASR distil-whisper fine-tuned

This model is a fine-tuned version of RodrigoLimaRFL/distil-whisper-nurc-sp-fine-tuned on the CORAA-MUPE-ASR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3488
  • Wer: 15.2736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4451 0.0558 1000 0.4482 18.5598
0.4006 0.1116 2000 0.4095 17.3061
0.2992 0.1674 3000 0.3848 16.5660
0.2781 0.2232 4000 0.3609 15.5857
0.2839 0.2790 5000 0.3488 15.2736

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1