{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14f60b4ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14f60b4f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14f60b5040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14f60b50d0>", "_build": "<function ActorCriticPolicy._build at 0x7f14f60b5160>", "forward": "<function ActorCriticPolicy.forward at 0x7f14f60b51f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14f60b5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14f60b5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14f60b53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14f60b5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14f60b54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14f60b5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14f60b3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688359419826662852, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDwfr6bxuu+/NLpPgbUv7gz4Sk+ewv+Pf/kZT5CPYC/h/UWP6A2970+ex0/G3ZDvSaVCD/qnmm94XdtP800Kj1qjha/6SBfPSXXOz9R5QQ+ODRcvwwXjzsJqtC+YKccvlm3mT4fDQLAATGYPiBjvj4NpBC/BWzdvqwW7z4HWBi+8lGRvea3OD6FNpg/eDVMvlSqMb/rzw2+Gt8sP5kkyr3J3Ks+PIcLvTdbGL7FLpY8OEsWv6Z3Oz1kmyQ/CkajPa0ECL+Dztk8rfKev4zEzL1Zt5k+Uvb7PgExmD4gY74+nEadv9mejD3McgU/J8qzvID/UzzTsjk+joHUP4sLHr/Ci2u/O3rZPD3/KT9RTb+9vAumPqG887xIgYA+nH91PTnCFb+DcWM9ewaqP3CTDz1TQhu/5MWzPAum3b/ovQe9WbeZPlL2+z4BMZg+IGO+Pld8GUCeL5U+chTvPgybFz+mMug/D6RcwK31eb/O4U0/mf8TPxSUEEDjsDPA95PKvdJIL789CE5AUDWbP7b8Zj1wN9s/tM2FQL3uFT+5Vx09vYrtPhdpT79ZHlK/K7MzvQksVcAfDQLAyU5XwMUcLMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARP4m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiDhLPQAAAABMouG/AAAAAAHl+jwAAAAAEvHqPwAAAAA/2pe9AAAAAIS19z8AAAAA+uujPQAAAAD4p+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXSKtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJuB6LwAAAAA9bfpvwAAAABy9SY9AAAAAOQKAEAAAAAAAyUqPQAAAAC5vOA/AAAAALzm8D0AAAAARhnjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSchjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyar+9AAAAAOzG278AAAAAaQnLvQAAAADdtuc/AAAAALsmOD0AAAAAn7/0PwAAAADqVwm+AAAAAODQ/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSgA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATzgMvgAAAAA8Hui/AAAAAKn1Cr4AAAAACYDuPwAAAADByxc9AAAAAIEY6z8AAAAAlCsDvQAAAAArqva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVwQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCFIAIY3vQaMAWyUSxWMAXSUR0AeD9Nvfj0ddX2UKGgGR0Bl3mCsfaHsaAdNXQFoCEdAIXb0e2d/a3V9lChoBkdAbBnQemvW6WgHTbcBaAhHQCJFPWQOnVJ1fZQoaAZHQH3QHWe6I31oB03oA2gIR0AmP2Xb/Ot5dX2UKGgGR0CAQLx+8XenaAdN6ANoCEdAJj96cAimmHV9lChoBkdAMHZVsDW9UWgHSyloCEdAJowaBI4EOnV9lChoBkdAFTEUj9n9N2gHSxVoCEdAJrIkRjBl+XV9lChoBkdAe1bS6lLvkWgHTegDaAhHQCjxuyeI2wV1fZQoaAZHQIFuhXOnl4loB03oA2gIR0ApvGy5Zr57dX2UKGgGR0B8sP5/LDAKaAdN6ANoCEdALcdNFjNILHV9lChoBkdAgQ263y7PIGgHTegDaAhHQC49XcQAdXF1fZQoaAZHQCFPEwWWQfZoB0sYaAhHQC5rjtG/etV1fZQoaAZHQHKGB2jfvWpoB002A2gIR0AvEcy31BdEdX2UKGgGR0B8tSii7CizaAdN6ANoCEdAMJ/vWpZOi3V9lChoBkdAYE5qagElmmgHS95oCEdAMZoJzDGcWnV9lChoBkdASU3pY9xIa2gHS2loCEdAMjAEMb3oLXV9lChoBkdAMY00vXbudGgHSyNoCEdAMnYMjNY8uHV9lChoBkdAB5anrIHTqmgHSxRoCEdAMpRHLA57xHV9lChoBkdAeFHRDkU9IWgHTegDaAhHQDORU6xPfsN1fZQoaAZHQIJJVrKvFFVoB03oA2gIR0A0HmFrVOKwdX2UKGgGR0B4wHmEGqxUaAdN6ANoCEdANLOSwGGEf3V9lChoBkdAUR7N1QqI8GgHS5RoCEdANPzkyULUkXV9lChoBkdAbJ6jqOcUd2gHTUgCaAhHQDXYyO7xusN1fZQoaAZHQFAM9rXUYsNoB0vcaAhHQDXy4RVZLZl1fZQoaAZHQFrrUcXFcY9oB00kAWgIR0A1+1/Ue+23dX2UKGgGR0BnKO/+KjzqaAdNswFoCEdAN7Omm+Cbt3V9lChoBkdAe3s2bXpW3mgHTegDaAhHQDgU2qDK5kN1fZQoaAZHQB0HPmgam41oB0sXaAhHQDgrF+/gzgx1fZQoaAZHQA+u1v2oNutoB0sUaAhHQDg+YiPhhph1fZQoaAZHQAWhr30wrUdoB0sVaAhHQDhRazNUwSJ1fZQoaAZHQHmQ4QBgeBBoB03oA2gIR0A5scOLBKtgdX2UKGgGR0B3AUU5+6RRaAdN6ANoCEdAOcy48U21lXV9lChoBkdAgDefetSydGgHTegDaAhHQDugbuMMqjJ1fZQoaAZHQHI7ia7VawFoB03oAWgIR0A7znk1dgOSdX2UKGgGR0BAGVkUbkwOaAdLYGgIR0A8BsvZh8YydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}} |