sid commited on
Commit
c90be78
1 Parent(s): e68d5b6

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 217.64 +/- 61.50
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 411.69 +/- 29.08
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8dae0c8a1a0a51f7c1c9a0b0b0cac501f59c94fafb6cb5ee8ee16206afec48ed
3
- size 126782
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e58e9680090abfd05b5dc20444238600ceb28d0159c5f1fdc843db09446df108
3
+ size 126906
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37541668b0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3754166940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37541669d0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3754166a60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f3754166af0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f3754166b80>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3754166c10>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3754166ca0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f3754166d30>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3754166dc0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3754166e50>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3754166ee0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f37546079c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -37,12 +37,12 @@
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
- "start_time": 1688358208298980408,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "_last_obs": {
44
  ":type:": "<class 'numpy.ndarray'>",
45
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4CGb+FB5c9kKsoP4lzFr7CYbE+9avkPa9fkD8p++c9Gdg+P/XOSr5RQWA/V7Fyvb2LZ7+mX6E+4hGbP49Wcj0+3BW/70kdPUci2LyKFMM8lCdtPyb61bxFjAy/a2NZviujpj4feXC/42+UPhercz4254i/gKolP4mprj4dnqI+QlEfP0iXrz6WcqU/CT55Pr3vtj8sVui8eWBgP0xgIj3XvoC/S/zbPShMmz9SlI68pfATv7XbMT4wNpi8sHU9PTkSbj/+7Ge9pe9sv6+Tzr4ro6Y+H3lwv+NvlD4Xq3M+BFXnPpZPbz+fmpk8RB0KPqApXT92rpU+NLwwv7Lahz9Tj7Y/8OBYOzrdF78/qAY+ZdmiP/DsArywKIG/K6aDPQfNob4sEjk/56/pv264uj2eo2w/gcNhvfY1XL+GHo2+K6OmPh95cL/jb5Q+F6tzPiV4kL88Cwu/q08JP3zHZL6EpEI8lZQzPmluCL9LZdY/BZe2P6utS7y4XpC/OuLwvZL2GD93pwLAWSOBvyFikj1fvfU/T9gdPXN0gLwxAEc9LuCevyTpyjvIZG+/vMlNvSujpj4feXC/42+UPhercz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
  },
47
  "_last_episode_starts": {
48
  ":type:": "<class 'numpy.ndarray'>",
@@ -50,7 +50,7 @@
50
  },
51
  "_last_original_obs": {
52
  ":type:": "<class 'numpy.ndarray'>",
53
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJOZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARC6avQAAAACOAem/AAAAAFoX9b0AAAAAbF3lPwAAAADuKcI9AAAAAFcE/j8AAAAAsAfJPQAAAAAnm+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2SVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGI1X70AAAAAeCvivwAAAABRS8i9AAAAAOkB+z8AAAAA+ZmFvQAAAAAVKOM/AAAAAGHlqz0AAAAADx33vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjc6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCQJq5AAAAANnO7r8AAAAAjNXRvQAAAAAy1/A/AAAAACLWur0AAAAASOP3PwAAAAADB9A9AAAAAF/p2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfdWE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASYRPvQAAAACOGPC/AAAAAA2smDsAAAAAC8/zPwAAAAB0l3U8AAAAAHt/+j8AAAAAJiEHPQAAAAC/Ov2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
  },
55
  "_episode_num": 0,
56
  "use_sde": true,
@@ -59,7 +59,7 @@
59
  "_stats_window_size": 100,
60
  "ep_info_buffer": {
61
  ":type:": "<class 'collections.deque'>",
62
- ":serialized:": "gAWV+gMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQPqkdmxt6MAWyUSxiMAXSUR0ATuALApKBedX2UKGgGR0A8ZT4L1EmZaAdLNWgIR0AUhRTCLuQZdX2UKGgGR0AXy+ajN6gNaAdLFGgIR0AUz6InBtUGdX2UKGgGR0AM0+7lJYknaAdLF2gIR0AVI6fapPykdX2UKGgGR0B+Ccuh9LHuaAdN6ANoCEdAISEf1YhdMXV9lChoBkdAeI3C3w1BMWgHTegDaAhHQCEhUNrj5sV1fZQoaAZHQHBte9WZJCloB03oA2gIR0AhIXqJMxoJdX2UKGgGRz/5ZDJEH+qBaAdLFmgIR0AhTByjpLVXdX2UKGgGR0AoE4FRpDeCaAdLLmgIR0AheMb3oLXudX2UKGgGR0ALThP0qYqoaAdLFGgIR0AhnXGwRoRJdX2UKGgGR0BpM57VrhzeaAdN6ANoCEdAIf97fHggo3V9lChoBkdAAa5n13+uNmgHSxRoCEdAIiRtYSxqwnV9lChoBke/6swL3K0UoWgHSxRoCEdAIkbsfJV81HV9lChoBkdAeu0ijL0SRWgHTegDaAhHQChAnfEXLvF1fZQoaAZHQHd24ePq9oNoB03oA2gIR0Aoaoc7yQPqdX2UKGgGR0B67UDcM3IdaAdN6ANoCEdAKL75mAbyY3V9lChoBkdAeHowgTyrgmgHTegDaAhHQClrVSXMQmN1fZQoaAZHP+zFspG4I8hoB0sUaAhHQCmP7SApazN1fZQoaAZHQHptTmOlwcZoB03oA2gIR0Avs7OE/SpjdX2UKGgGR0BzxhxT850baAdN6ANoCEdAL92+GoJiRXV9lChoBkdAMXyPuG9HtmgHSydoCEdAL/0tyxRl6XV9lChoBkdALELwe/5+IGgHSyNoCEdAMA+P/7zkIXV9lChoBkdAdaHZvDP4VWgHTegDaAhHQDAXsPatcOd1fZQoaAZHQCFb08NhE0BoB0smaAhHQDA6P4mCyyF1fZQoaAZHQHRMVfZ26kJoB03oA2gIR0AwgQyhzvJBdX2UKGgGR0BT3SMHbAUMaAdLpmgIR0Awl6po9LYgdX2UKGgGR0B5ZLX2/SH/aAdNrAJoCEdAMrb2QGOdXnV9lChoBkdAbDJG4I8hcWgHTdoCaAhHQDNEcp9ZzPt1fZQoaAZHQH6l1mBe5WloB03oA2gIR0AzuZgXuVopdX2UKGgGR0BySxM8HObBaAdN6ANoCEdANC7r5ZbILnV9lChoBkdAe6qQwsXizmgHTegDaAhHQDZvlJYkmhN1fZQoaAZHQH6BnHBDXvpoB03oA2gIR0A2/K1XvH94dWUu"
63
  },
64
  "ep_success_buffer": {
65
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14f60b4ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14f60b4f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14f60b5040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14f60b50d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f14f60b5160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f14f60b51f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14f60b5280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14f60b5310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f14f60b53a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14f60b5430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14f60b54c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14f60b5550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f14f60b3640>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1688359419826662852,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "_last_obs": {
44
  ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDwfr6bxuu+/NLpPgbUv7gz4Sk+ewv+Pf/kZT5CPYC/h/UWP6A2970+ex0/G3ZDvSaVCD/qnmm94XdtP800Kj1qjha/6SBfPSXXOz9R5QQ+ODRcvwwXjzsJqtC+YKccvlm3mT4fDQLAATGYPiBjvj4NpBC/BWzdvqwW7z4HWBi+8lGRvea3OD6FNpg/eDVMvlSqMb/rzw2+Gt8sP5kkyr3J3Ks+PIcLvTdbGL7FLpY8OEsWv6Z3Oz1kmyQ/CkajPa0ECL+Dztk8rfKev4zEzL1Zt5k+Uvb7PgExmD4gY74+nEadv9mejD3McgU/J8qzvID/UzzTsjk+joHUP4sLHr/Ci2u/O3rZPD3/KT9RTb+9vAumPqG887xIgYA+nH91PTnCFb+DcWM9ewaqP3CTDz1TQhu/5MWzPAum3b/ovQe9WbeZPlL2+z4BMZg+IGO+Pld8GUCeL5U+chTvPgybFz+mMug/D6RcwK31eb/O4U0/mf8TPxSUEEDjsDPA95PKvdJIL789CE5AUDWbP7b8Zj1wN9s/tM2FQL3uFT+5Vx09vYrtPhdpT79ZHlK/K7MzvQksVcAfDQLAyU5XwMUcLMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
  },
47
  "_last_episode_starts": {
48
  ":type:": "<class 'numpy.ndarray'>",
 
50
  },
51
  "_last_original_obs": {
52
  ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARP4m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiDhLPQAAAABMouG/AAAAAAHl+jwAAAAAEvHqPwAAAAA/2pe9AAAAAIS19z8AAAAA+uujPQAAAAD4p+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXSKtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJuB6LwAAAAA9bfpvwAAAABy9SY9AAAAAOQKAEAAAAAAAyUqPQAAAAC5vOA/AAAAALzm8D0AAAAARhnjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSchjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyar+9AAAAAOzG278AAAAAaQnLvQAAAADdtuc/AAAAALsmOD0AAAAAn7/0PwAAAADqVwm+AAAAAODQ/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSgA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATzgMvgAAAAA8Hui/AAAAAKn1Cr4AAAAACYDuPwAAAADByxc9AAAAAIEY6z8AAAAAlCsDvQAAAAArqva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
  },
55
  "_episode_num": 0,
56
  "use_sde": true,
 
59
  "_stats_window_size": 100,
60
  "ep_info_buffer": {
61
  ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVVwQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCFIAIY3vQaMAWyUSxWMAXSUR0AeD9Nvfj0ddX2UKGgGR0Bl3mCsfaHsaAdNXQFoCEdAIXb0e2d/a3V9lChoBkdAbBnQemvW6WgHTbcBaAhHQCJFPWQOnVJ1fZQoaAZHQH3QHWe6I31oB03oA2gIR0AmP2Xb/Ot5dX2UKGgGR0CAQLx+8XenaAdN6ANoCEdAJj96cAimmHV9lChoBkdAMHZVsDW9UWgHSyloCEdAJowaBI4EOnV9lChoBkdAFTEUj9n9N2gHSxVoCEdAJrIkRjBl+XV9lChoBkdAe1bS6lLvkWgHTegDaAhHQCjxuyeI2wV1fZQoaAZHQIFuhXOnl4loB03oA2gIR0ApvGy5Zr57dX2UKGgGR0B8sP5/LDAKaAdN6ANoCEdALcdNFjNILHV9lChoBkdAgQ263y7PIGgHTegDaAhHQC49XcQAdXF1fZQoaAZHQCFPEwWWQfZoB0sYaAhHQC5rjtG/etV1fZQoaAZHQHKGB2jfvWpoB002A2gIR0AvEcy31BdEdX2UKGgGR0B8tSii7CizaAdN6ANoCEdAMJ/vWpZOi3V9lChoBkdAYE5qagElmmgHS95oCEdAMZoJzDGcWnV9lChoBkdASU3pY9xIa2gHS2loCEdAMjAEMb3oLXV9lChoBkdAMY00vXbudGgHSyNoCEdAMnYMjNY8uHV9lChoBkdAB5anrIHTqmgHSxRoCEdAMpRHLA57xHV9lChoBkdAeFHRDkU9IWgHTegDaAhHQDORU6xPfsN1fZQoaAZHQIJJVrKvFFVoB03oA2gIR0A0HmFrVOKwdX2UKGgGR0B4wHmEGqxUaAdN6ANoCEdANLOSwGGEf3V9lChoBkdAUR7N1QqI8GgHS5RoCEdANPzkyULUkXV9lChoBkdAbJ6jqOcUd2gHTUgCaAhHQDXYyO7xusN1fZQoaAZHQFAM9rXUYsNoB0vcaAhHQDXy4RVZLZl1fZQoaAZHQFrrUcXFcY9oB00kAWgIR0A1+1/Ue+23dX2UKGgGR0BnKO/+KjzqaAdNswFoCEdAN7Omm+Cbt3V9lChoBkdAe3s2bXpW3mgHTegDaAhHQDgU2qDK5kN1fZQoaAZHQB0HPmgam41oB0sXaAhHQDgrF+/gzgx1fZQoaAZHQA+u1v2oNutoB0sUaAhHQDg+YiPhhph1fZQoaAZHQAWhr30wrUdoB0sVaAhHQDhRazNUwSJ1fZQoaAZHQHmQ4QBgeBBoB03oA2gIR0A5scOLBKtgdX2UKGgGR0B3AUU5+6RRaAdN6ANoCEdAOcy48U21lXV9lChoBkdAgDefetSydGgHTegDaAhHQDugbuMMqjJ1fZQoaAZHQHI7ia7VawFoB03oAWgIR0A7znk1dgOSdX2UKGgGR0BAGVkUbkwOaAdLYGgIR0A8BsvZh8YydWUu"
63
  },
64
  "ep_success_buffer": {
65
  ":type:": "<class 'collections.deque'>",
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1d7c0100a467827cc43ef29488d4b5b93c8d6c21abf3a734a4c373c1de4fe79c
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f393e945ca2935049302f9dcef58c4b027d9628353e2159a4a4f5e0f571ede8a
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:372e00cb70a0046131bfb98bdc0af86e3957747b83d3d74c597e949a7c313a23
3
  size 56894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda48c344e0b91eff7de7ad9d67315dd8e1a84a41d5885f9990a82ea21de41f6
3
  size 56894
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37541668b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3754166940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37541669d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3754166a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3754166af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3754166b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3754166c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3754166ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3754166d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3754166dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3754166e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3754166ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f37546079c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688358208298980408, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4CGb+FB5c9kKsoP4lzFr7CYbE+9avkPa9fkD8p++c9Gdg+P/XOSr5RQWA/V7Fyvb2LZ7+mX6E+4hGbP49Wcj0+3BW/70kdPUci2LyKFMM8lCdtPyb61bxFjAy/a2NZviujpj4feXC/42+UPhercz4254i/gKolP4mprj4dnqI+QlEfP0iXrz6WcqU/CT55Pr3vtj8sVui8eWBgP0xgIj3XvoC/S/zbPShMmz9SlI68pfATv7XbMT4wNpi8sHU9PTkSbj/+7Ge9pe9sv6+Tzr4ro6Y+H3lwv+NvlD4Xq3M+BFXnPpZPbz+fmpk8RB0KPqApXT92rpU+NLwwv7Lahz9Tj7Y/8OBYOzrdF78/qAY+ZdmiP/DsArywKIG/K6aDPQfNob4sEjk/56/pv264uj2eo2w/gcNhvfY1XL+GHo2+K6OmPh95cL/jb5Q+F6tzPiV4kL88Cwu/q08JP3zHZL6EpEI8lZQzPmluCL9LZdY/BZe2P6utS7y4XpC/OuLwvZL2GD93pwLAWSOBvyFikj1fvfU/T9gdPXN0gLwxAEc9LuCevyTpyjvIZG+/vMlNvSujpj4feXC/42+UPhercz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJOZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARC6avQAAAACOAem/AAAAAFoX9b0AAAAAbF3lPwAAAADuKcI9AAAAAFcE/j8AAAAAsAfJPQAAAAAnm+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2SVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGI1X70AAAAAeCvivwAAAABRS8i9AAAAAOkB+z8AAAAA+ZmFvQAAAAAVKOM/AAAAAGHlqz0AAAAADx33vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjc6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCQJq5AAAAANnO7r8AAAAAjNXRvQAAAAAy1/A/AAAAACLWur0AAAAASOP3PwAAAAADB9A9AAAAAF/p2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfdWE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASYRPvQAAAACOGPC/AAAAAA2smDsAAAAAC8/zPwAAAAB0l3U8AAAAAHt/+j8AAAAAJiEHPQAAAAC/Ov2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQPqkdmxt6MAWyUSxiMAXSUR0ATuALApKBedX2UKGgGR0A8ZT4L1EmZaAdLNWgIR0AUhRTCLuQZdX2UKGgGR0AXy+ajN6gNaAdLFGgIR0AUz6InBtUGdX2UKGgGR0AM0+7lJYknaAdLF2gIR0AVI6fapPykdX2UKGgGR0B+Ccuh9LHuaAdN6ANoCEdAISEf1YhdMXV9lChoBkdAeI3C3w1BMWgHTegDaAhHQCEhUNrj5sV1fZQoaAZHQHBte9WZJCloB03oA2gIR0AhIXqJMxoJdX2UKGgGRz/5ZDJEH+qBaAdLFmgIR0AhTByjpLVXdX2UKGgGR0AoE4FRpDeCaAdLLmgIR0AheMb3oLXudX2UKGgGR0ALThP0qYqoaAdLFGgIR0AhnXGwRoRJdX2UKGgGR0BpM57VrhzeaAdN6ANoCEdAIf97fHggo3V9lChoBkdAAa5n13+uNmgHSxRoCEdAIiRtYSxqwnV9lChoBke/6swL3K0UoWgHSxRoCEdAIkbsfJV81HV9lChoBkdAeu0ijL0SRWgHTegDaAhHQChAnfEXLvF1fZQoaAZHQHd24ePq9oNoB03oA2gIR0Aoaoc7yQPqdX2UKGgGR0B67UDcM3IdaAdN6ANoCEdAKL75mAbyY3V9lChoBkdAeHowgTyrgmgHTegDaAhHQClrVSXMQmN1fZQoaAZHP+zFspG4I8hoB0sUaAhHQCmP7SApazN1fZQoaAZHQHptTmOlwcZoB03oA2gIR0Avs7OE/SpjdX2UKGgGR0BzxhxT850baAdN6ANoCEdAL92+GoJiRXV9lChoBkdAMXyPuG9HtmgHSydoCEdAL/0tyxRl6XV9lChoBkdALELwe/5+IGgHSyNoCEdAMA+P/7zkIXV9lChoBkdAdaHZvDP4VWgHTegDaAhHQDAXsPatcOd1fZQoaAZHQCFb08NhE0BoB0smaAhHQDA6P4mCyyF1fZQoaAZHQHRMVfZ26kJoB03oA2gIR0AwgQyhzvJBdX2UKGgGR0BT3SMHbAUMaAdLpmgIR0Awl6po9LYgdX2UKGgGR0B5ZLX2/SH/aAdNrAJoCEdAMrb2QGOdXnV9lChoBkdAbDJG4I8hcWgHTdoCaAhHQDNEcp9ZzPt1fZQoaAZHQH6l1mBe5WloB03oA2gIR0AzuZgXuVopdX2UKGgGR0BySxM8HObBaAdN6ANoCEdANC7r5ZbILnV9lChoBkdAe6qQwsXizmgHTegDaAhHQDZvlJYkmhN1fZQoaAZHQH6BnHBDXvpoB03oA2gIR0A2/K1XvH94dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14f60b4ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14f60b4f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14f60b5040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14f60b50d0>", "_build": "<function ActorCriticPolicy._build at 0x7f14f60b5160>", "forward": "<function ActorCriticPolicy.forward at 0x7f14f60b51f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14f60b5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14f60b5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14f60b53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14f60b5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14f60b54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14f60b5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14f60b3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688359419826662852, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDwfr6bxuu+/NLpPgbUv7gz4Sk+ewv+Pf/kZT5CPYC/h/UWP6A2970+ex0/G3ZDvSaVCD/qnmm94XdtP800Kj1qjha/6SBfPSXXOz9R5QQ+ODRcvwwXjzsJqtC+YKccvlm3mT4fDQLAATGYPiBjvj4NpBC/BWzdvqwW7z4HWBi+8lGRvea3OD6FNpg/eDVMvlSqMb/rzw2+Gt8sP5kkyr3J3Ks+PIcLvTdbGL7FLpY8OEsWv6Z3Oz1kmyQ/CkajPa0ECL+Dztk8rfKev4zEzL1Zt5k+Uvb7PgExmD4gY74+nEadv9mejD3McgU/J8qzvID/UzzTsjk+joHUP4sLHr/Ci2u/O3rZPD3/KT9RTb+9vAumPqG887xIgYA+nH91PTnCFb+DcWM9ewaqP3CTDz1TQhu/5MWzPAum3b/ovQe9WbeZPlL2+z4BMZg+IGO+Pld8GUCeL5U+chTvPgybFz+mMug/D6RcwK31eb/O4U0/mf8TPxSUEEDjsDPA95PKvdJIL789CE5AUDWbP7b8Zj1wN9s/tM2FQL3uFT+5Vx09vYrtPhdpT79ZHlK/K7MzvQksVcAfDQLAyU5XwMUcLMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARP4m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiDhLPQAAAABMouG/AAAAAAHl+jwAAAAAEvHqPwAAAAA/2pe9AAAAAIS19z8AAAAA+uujPQAAAAD4p+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXSKtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJuB6LwAAAAA9bfpvwAAAABy9SY9AAAAAOQKAEAAAAAAAyUqPQAAAAC5vOA/AAAAALzm8D0AAAAARhnjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSchjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyar+9AAAAAOzG278AAAAAaQnLvQAAAADdtuc/AAAAALsmOD0AAAAAn7/0PwAAAADqVwm+AAAAAODQ/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSgA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATzgMvgAAAAA8Hui/AAAAAKn1Cr4AAAAACYDuPwAAAADByxc9AAAAAIEY6z8AAAAAlCsDvQAAAAArqva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVwQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCFIAIY3vQaMAWyUSxWMAXSUR0AeD9Nvfj0ddX2UKGgGR0Bl3mCsfaHsaAdNXQFoCEdAIXb0e2d/a3V9lChoBkdAbBnQemvW6WgHTbcBaAhHQCJFPWQOnVJ1fZQoaAZHQH3QHWe6I31oB03oA2gIR0AmP2Xb/Ot5dX2UKGgGR0CAQLx+8XenaAdN6ANoCEdAJj96cAimmHV9lChoBkdAMHZVsDW9UWgHSyloCEdAJowaBI4EOnV9lChoBkdAFTEUj9n9N2gHSxVoCEdAJrIkRjBl+XV9lChoBkdAe1bS6lLvkWgHTegDaAhHQCjxuyeI2wV1fZQoaAZHQIFuhXOnl4loB03oA2gIR0ApvGy5Zr57dX2UKGgGR0B8sP5/LDAKaAdN6ANoCEdALcdNFjNILHV9lChoBkdAgQ263y7PIGgHTegDaAhHQC49XcQAdXF1fZQoaAZHQCFPEwWWQfZoB0sYaAhHQC5rjtG/etV1fZQoaAZHQHKGB2jfvWpoB002A2gIR0AvEcy31BdEdX2UKGgGR0B8tSii7CizaAdN6ANoCEdAMJ/vWpZOi3V9lChoBkdAYE5qagElmmgHS95oCEdAMZoJzDGcWnV9lChoBkdASU3pY9xIa2gHS2loCEdAMjAEMb3oLXV9lChoBkdAMY00vXbudGgHSyNoCEdAMnYMjNY8uHV9lChoBkdAB5anrIHTqmgHSxRoCEdAMpRHLA57xHV9lChoBkdAeFHRDkU9IWgHTegDaAhHQDORU6xPfsN1fZQoaAZHQIJJVrKvFFVoB03oA2gIR0A0HmFrVOKwdX2UKGgGR0B4wHmEGqxUaAdN6ANoCEdANLOSwGGEf3V9lChoBkdAUR7N1QqI8GgHS5RoCEdANPzkyULUkXV9lChoBkdAbJ6jqOcUd2gHTUgCaAhHQDXYyO7xusN1fZQoaAZHQFAM9rXUYsNoB0vcaAhHQDXy4RVZLZl1fZQoaAZHQFrrUcXFcY9oB00kAWgIR0A1+1/Ue+23dX2UKGgGR0BnKO/+KjzqaAdNswFoCEdAN7Omm+Cbt3V9lChoBkdAe3s2bXpW3mgHTegDaAhHQDgU2qDK5kN1fZQoaAZHQB0HPmgam41oB0sXaAhHQDgrF+/gzgx1fZQoaAZHQA+u1v2oNutoB0sUaAhHQDg+YiPhhph1fZQoaAZHQAWhr30wrUdoB0sVaAhHQDhRazNUwSJ1fZQoaAZHQHmQ4QBgeBBoB03oA2gIR0A5scOLBKtgdX2UKGgGR0B3AUU5+6RRaAdN6ANoCEdAOcy48U21lXV9lChoBkdAgDefetSydGgHTegDaAhHQDugbuMMqjJ1fZQoaAZHQHI7ia7VawFoB03oAWgIR0A7znk1dgOSdX2UKGgGR0BAGVkUbkwOaAdLYGgIR0A8BsvZh8YydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 217.63591472599654, "std_reward": 61.4997926370169, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-02T21:37:13.764512"}
 
1
+ {"mean_reward": 411.6911007501185, "std_reward": 29.084696231614746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-02T21:44:55.626935"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:146ee5948b3fa6a3a374f7a4dac05595e7dacb8e72be485d1263fc3e58ced765
3
- size 2376
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6e7bfe7e7c1a8da91bb690969de055ad558a2468a6f75844c788724cf89a545
3
+ size 2335