Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 411.69 +/- 29.08
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e58e9680090abfd05b5dc20444238600ceb28d0159c5f1fdc843db09446df108
|
3 |
+
size 126906
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,12 +37,12 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"_last_obs": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
45 |
-
":serialized:": "
|
46 |
},
|
47 |
"_last_episode_starts": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -50,7 +50,7 @@
|
|
50 |
},
|
51 |
"_last_original_obs": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
-
":serialized:": "
|
54 |
},
|
55 |
"_episode_num": 0,
|
56 |
"use_sde": true,
|
@@ -59,7 +59,7 @@
|
|
59 |
"_stats_window_size": 100,
|
60 |
"ep_info_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
-
":serialized:": "
|
63 |
},
|
64 |
"ep_success_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f14f60b4ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14f60b4f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14f60b5040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14f60b50d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f14f60b5160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f14f60b51f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14f60b5280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14f60b5310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f14f60b53a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14f60b5430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14f60b54c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14f60b5550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f14f60b3640>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1688359419826662852,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"_last_obs": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDwfr6bxuu+/NLpPgbUv7gz4Sk+ewv+Pf/kZT5CPYC/h/UWP6A2970+ex0/G3ZDvSaVCD/qnmm94XdtP800Kj1qjha/6SBfPSXXOz9R5QQ+ODRcvwwXjzsJqtC+YKccvlm3mT4fDQLAATGYPiBjvj4NpBC/BWzdvqwW7z4HWBi+8lGRvea3OD6FNpg/eDVMvlSqMb/rzw2+Gt8sP5kkyr3J3Ks+PIcLvTdbGL7FLpY8OEsWv6Z3Oz1kmyQ/CkajPa0ECL+Dztk8rfKev4zEzL1Zt5k+Uvb7PgExmD4gY74+nEadv9mejD3McgU/J8qzvID/UzzTsjk+joHUP4sLHr/Ci2u/O3rZPD3/KT9RTb+9vAumPqG887xIgYA+nH91PTnCFb+DcWM9ewaqP3CTDz1TQhu/5MWzPAum3b/ovQe9WbeZPlL2+z4BMZg+IGO+Pld8GUCeL5U+chTvPgybFz+mMug/D6RcwK31eb/O4U0/mf8TPxSUEEDjsDPA95PKvdJIL789CE5AUDWbP7b8Zj1wN9s/tM2FQL3uFT+5Vx09vYrtPhdpT79ZHlK/K7MzvQksVcAfDQLAyU5XwMUcLMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
46 |
},
|
47 |
"_last_episode_starts": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
50 |
},
|
51 |
"_last_original_obs": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARP4m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiDhLPQAAAABMouG/AAAAAAHl+jwAAAAAEvHqPwAAAAA/2pe9AAAAAIS19z8AAAAA+uujPQAAAAD4p+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXSKtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJuB6LwAAAAA9bfpvwAAAABy9SY9AAAAAOQKAEAAAAAAAyUqPQAAAAC5vOA/AAAAALzm8D0AAAAARhnjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSchjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyar+9AAAAAOzG278AAAAAaQnLvQAAAADdtuc/AAAAALsmOD0AAAAAn7/0PwAAAADqVwm+AAAAAODQ/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSgA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATzgMvgAAAAA8Hui/AAAAAKn1Cr4AAAAACYDuPwAAAADByxc9AAAAAIEY6z8AAAAAlCsDvQAAAAArqva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
54 |
},
|
55 |
"_episode_num": 0,
|
56 |
"use_sde": true,
|
|
|
59 |
"_stats_window_size": 100,
|
60 |
"ep_info_buffer": {
|
61 |
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVVwQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCFIAIY3vQaMAWyUSxWMAXSUR0AeD9Nvfj0ddX2UKGgGR0Bl3mCsfaHsaAdNXQFoCEdAIXb0e2d/a3V9lChoBkdAbBnQemvW6WgHTbcBaAhHQCJFPWQOnVJ1fZQoaAZHQH3QHWe6I31oB03oA2gIR0AmP2Xb/Ot5dX2UKGgGR0CAQLx+8XenaAdN6ANoCEdAJj96cAimmHV9lChoBkdAMHZVsDW9UWgHSyloCEdAJowaBI4EOnV9lChoBkdAFTEUj9n9N2gHSxVoCEdAJrIkRjBl+XV9lChoBkdAe1bS6lLvkWgHTegDaAhHQCjxuyeI2wV1fZQoaAZHQIFuhXOnl4loB03oA2gIR0ApvGy5Zr57dX2UKGgGR0B8sP5/LDAKaAdN6ANoCEdALcdNFjNILHV9lChoBkdAgQ263y7PIGgHTegDaAhHQC49XcQAdXF1fZQoaAZHQCFPEwWWQfZoB0sYaAhHQC5rjtG/etV1fZQoaAZHQHKGB2jfvWpoB002A2gIR0AvEcy31BdEdX2UKGgGR0B8tSii7CizaAdN6ANoCEdAMJ/vWpZOi3V9lChoBkdAYE5qagElmmgHS95oCEdAMZoJzDGcWnV9lChoBkdASU3pY9xIa2gHS2loCEdAMjAEMb3oLXV9lChoBkdAMY00vXbudGgHSyNoCEdAMnYMjNY8uHV9lChoBkdAB5anrIHTqmgHSxRoCEdAMpRHLA57xHV9lChoBkdAeFHRDkU9IWgHTegDaAhHQDORU6xPfsN1fZQoaAZHQIJJVrKvFFVoB03oA2gIR0A0HmFrVOKwdX2UKGgGR0B4wHmEGqxUaAdN6ANoCEdANLOSwGGEf3V9lChoBkdAUR7N1QqI8GgHS5RoCEdANPzkyULUkXV9lChoBkdAbJ6jqOcUd2gHTUgCaAhHQDXYyO7xusN1fZQoaAZHQFAM9rXUYsNoB0vcaAhHQDXy4RVZLZl1fZQoaAZHQFrrUcXFcY9oB00kAWgIR0A1+1/Ue+23dX2UKGgGR0BnKO/+KjzqaAdNswFoCEdAN7Omm+Cbt3V9lChoBkdAe3s2bXpW3mgHTegDaAhHQDgU2qDK5kN1fZQoaAZHQB0HPmgam41oB0sXaAhHQDgrF+/gzgx1fZQoaAZHQA+u1v2oNutoB0sUaAhHQDg+YiPhhph1fZQoaAZHQAWhr30wrUdoB0sVaAhHQDhRazNUwSJ1fZQoaAZHQHmQ4QBgeBBoB03oA2gIR0A5scOLBKtgdX2UKGgGR0B3AUU5+6RRaAdN6ANoCEdAOcy48U21lXV9lChoBkdAgDefetSydGgHTegDaAhHQDugbuMMqjJ1fZQoaAZHQHI7ia7VawFoB03oAWgIR0A7znk1dgOSdX2UKGgGR0BAGVkUbkwOaAdLYGgIR0A8BsvZh8YydWUu"
|
63 |
},
|
64 |
"ep_success_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f393e945ca2935049302f9dcef58c4b027d9628353e2159a4a4f5e0f571ede8a
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fda48c344e0b91eff7de7ad9d67315dd8e1a84a41d5885f9990a82ea21de41f6
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37541668b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3754166940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37541669d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3754166a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3754166af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3754166b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3754166c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3754166ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3754166d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3754166dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3754166e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3754166ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f37546079c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688358208298980408, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH4CGb+FB5c9kKsoP4lzFr7CYbE+9avkPa9fkD8p++c9Gdg+P/XOSr5RQWA/V7Fyvb2LZ7+mX6E+4hGbP49Wcj0+3BW/70kdPUci2LyKFMM8lCdtPyb61bxFjAy/a2NZviujpj4feXC/42+UPhercz4254i/gKolP4mprj4dnqI+QlEfP0iXrz6WcqU/CT55Pr3vtj8sVui8eWBgP0xgIj3XvoC/S/zbPShMmz9SlI68pfATv7XbMT4wNpi8sHU9PTkSbj/+7Ge9pe9sv6+Tzr4ro6Y+H3lwv+NvlD4Xq3M+BFXnPpZPbz+fmpk8RB0KPqApXT92rpU+NLwwv7Lahz9Tj7Y/8OBYOzrdF78/qAY+ZdmiP/DsArywKIG/K6aDPQfNob4sEjk/56/pv264uj2eo2w/gcNhvfY1XL+GHo2+K6OmPh95cL/jb5Q+F6tzPiV4kL88Cwu/q08JP3zHZL6EpEI8lZQzPmluCL9LZdY/BZe2P6utS7y4XpC/OuLwvZL2GD93pwLAWSOBvyFikj1fvfU/T9gdPXN0gLwxAEc9LuCevyTpyjvIZG+/vMlNvSujpj4feXC/42+UPhercz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACJOZa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARC6avQAAAACOAem/AAAAAFoX9b0AAAAAbF3lPwAAAADuKcI9AAAAAFcE/j8AAAAAsAfJPQAAAAAnm+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE2SVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGI1X70AAAAAeCvivwAAAABRS8i9AAAAAOkB+z8AAAAA+ZmFvQAAAAAVKOM/AAAAAGHlqz0AAAAADx33vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANjc6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCQJq5AAAAANnO7r8AAAAAjNXRvQAAAAAy1/A/AAAAACLWur0AAAAASOP3PwAAAAADB9A9AAAAAF/p2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADfdWE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASYRPvQAAAACOGPC/AAAAAA2smDsAAAAAC8/zPwAAAAB0l3U8AAAAAHt/+j8AAAAAJiEHPQAAAAC/Ov2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCQPqkdmxt6MAWyUSxiMAXSUR0ATuALApKBedX2UKGgGR0A8ZT4L1EmZaAdLNWgIR0AUhRTCLuQZdX2UKGgGR0AXy+ajN6gNaAdLFGgIR0AUz6InBtUGdX2UKGgGR0AM0+7lJYknaAdLF2gIR0AVI6fapPykdX2UKGgGR0B+Ccuh9LHuaAdN6ANoCEdAISEf1YhdMXV9lChoBkdAeI3C3w1BMWgHTegDaAhHQCEhUNrj5sV1fZQoaAZHQHBte9WZJCloB03oA2gIR0AhIXqJMxoJdX2UKGgGRz/5ZDJEH+qBaAdLFmgIR0AhTByjpLVXdX2UKGgGR0AoE4FRpDeCaAdLLmgIR0AheMb3oLXudX2UKGgGR0ALThP0qYqoaAdLFGgIR0AhnXGwRoRJdX2UKGgGR0BpM57VrhzeaAdN6ANoCEdAIf97fHggo3V9lChoBkdAAa5n13+uNmgHSxRoCEdAIiRtYSxqwnV9lChoBke/6swL3K0UoWgHSxRoCEdAIkbsfJV81HV9lChoBkdAeu0ijL0SRWgHTegDaAhHQChAnfEXLvF1fZQoaAZHQHd24ePq9oNoB03oA2gIR0Aoaoc7yQPqdX2UKGgGR0B67UDcM3IdaAdN6ANoCEdAKL75mAbyY3V9lChoBkdAeHowgTyrgmgHTegDaAhHQClrVSXMQmN1fZQoaAZHP+zFspG4I8hoB0sUaAhHQCmP7SApazN1fZQoaAZHQHptTmOlwcZoB03oA2gIR0Avs7OE/SpjdX2UKGgGR0BzxhxT850baAdN6ANoCEdAL92+GoJiRXV9lChoBkdAMXyPuG9HtmgHSydoCEdAL/0tyxRl6XV9lChoBkdALELwe/5+IGgHSyNoCEdAMA+P/7zkIXV9lChoBkdAdaHZvDP4VWgHTegDaAhHQDAXsPatcOd1fZQoaAZHQCFb08NhE0BoB0smaAhHQDA6P4mCyyF1fZQoaAZHQHRMVfZ26kJoB03oA2gIR0AwgQyhzvJBdX2UKGgGR0BT3SMHbAUMaAdLpmgIR0Awl6po9LYgdX2UKGgGR0B5ZLX2/SH/aAdNrAJoCEdAMrb2QGOdXnV9lChoBkdAbDJG4I8hcWgHTdoCaAhHQDNEcp9ZzPt1fZQoaAZHQH6l1mBe5WloB03oA2gIR0AzuZgXuVopdX2UKGgGR0BySxM8HObBaAdN6ANoCEdANC7r5ZbILnV9lChoBkdAe6qQwsXizmgHTegDaAhHQDZvlJYkmhN1fZQoaAZHQH6BnHBDXvpoB03oA2gIR0A2/K1XvH94dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14f60b4ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14f60b4f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14f60b5040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14f60b50d0>", "_build": "<function ActorCriticPolicy._build at 0x7f14f60b5160>", "forward": "<function ActorCriticPolicy.forward at 0x7f14f60b51f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14f60b5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14f60b5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14f60b53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14f60b5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14f60b54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14f60b5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14f60b3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688359419826662852, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKDwfr6bxuu+/NLpPgbUv7gz4Sk+ewv+Pf/kZT5CPYC/h/UWP6A2970+ex0/G3ZDvSaVCD/qnmm94XdtP800Kj1qjha/6SBfPSXXOz9R5QQ+ODRcvwwXjzsJqtC+YKccvlm3mT4fDQLAATGYPiBjvj4NpBC/BWzdvqwW7z4HWBi+8lGRvea3OD6FNpg/eDVMvlSqMb/rzw2+Gt8sP5kkyr3J3Ks+PIcLvTdbGL7FLpY8OEsWv6Z3Oz1kmyQ/CkajPa0ECL+Dztk8rfKev4zEzL1Zt5k+Uvb7PgExmD4gY74+nEadv9mejD3McgU/J8qzvID/UzzTsjk+joHUP4sLHr/Ci2u/O3rZPD3/KT9RTb+9vAumPqG887xIgYA+nH91PTnCFb+DcWM9ewaqP3CTDz1TQhu/5MWzPAum3b/ovQe9WbeZPlL2+z4BMZg+IGO+Pld8GUCeL5U+chTvPgybFz+mMug/D6RcwK31eb/O4U0/mf8TPxSUEEDjsDPA95PKvdJIL789CE5AUDWbP7b8Zj1wN9s/tM2FQL3uFT+5Vx09vYrtPhdpT79ZHlK/K7MzvQksVcAfDQLAyU5XwMUcLMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAARP4m2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiDhLPQAAAABMouG/AAAAAAHl+jwAAAAAEvHqPwAAAAA/2pe9AAAAAIS19z8AAAAA+uujPQAAAAD4p+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXSKtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJuB6LwAAAAA9bfpvwAAAABy9SY9AAAAAOQKAEAAAAAAAyUqPQAAAAC5vOA/AAAAALzm8D0AAAAARhnjvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSchjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAyar+9AAAAAOzG278AAAAAaQnLvQAAAADdtuc/AAAAALsmOD0AAAAAn7/0PwAAAADqVwm+AAAAAODQ/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgSgA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATzgMvgAAAAA8Hui/AAAAAKn1Cr4AAAAACYDuPwAAAADByxc9AAAAAIEY6z8AAAAAlCsDvQAAAAArqva/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVwQAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCFIAIY3vQaMAWyUSxWMAXSUR0AeD9Nvfj0ddX2UKGgGR0Bl3mCsfaHsaAdNXQFoCEdAIXb0e2d/a3V9lChoBkdAbBnQemvW6WgHTbcBaAhHQCJFPWQOnVJ1fZQoaAZHQH3QHWe6I31oB03oA2gIR0AmP2Xb/Ot5dX2UKGgGR0CAQLx+8XenaAdN6ANoCEdAJj96cAimmHV9lChoBkdAMHZVsDW9UWgHSyloCEdAJowaBI4EOnV9lChoBkdAFTEUj9n9N2gHSxVoCEdAJrIkRjBl+XV9lChoBkdAe1bS6lLvkWgHTegDaAhHQCjxuyeI2wV1fZQoaAZHQIFuhXOnl4loB03oA2gIR0ApvGy5Zr57dX2UKGgGR0B8sP5/LDAKaAdN6ANoCEdALcdNFjNILHV9lChoBkdAgQ263y7PIGgHTegDaAhHQC49XcQAdXF1fZQoaAZHQCFPEwWWQfZoB0sYaAhHQC5rjtG/etV1fZQoaAZHQHKGB2jfvWpoB002A2gIR0AvEcy31BdEdX2UKGgGR0B8tSii7CizaAdN6ANoCEdAMJ/vWpZOi3V9lChoBkdAYE5qagElmmgHS95oCEdAMZoJzDGcWnV9lChoBkdASU3pY9xIa2gHS2loCEdAMjAEMb3oLXV9lChoBkdAMY00vXbudGgHSyNoCEdAMnYMjNY8uHV9lChoBkdAB5anrIHTqmgHSxRoCEdAMpRHLA57xHV9lChoBkdAeFHRDkU9IWgHTegDaAhHQDORU6xPfsN1fZQoaAZHQIJJVrKvFFVoB03oA2gIR0A0HmFrVOKwdX2UKGgGR0B4wHmEGqxUaAdN6ANoCEdANLOSwGGEf3V9lChoBkdAUR7N1QqI8GgHS5RoCEdANPzkyULUkXV9lChoBkdAbJ6jqOcUd2gHTUgCaAhHQDXYyO7xusN1fZQoaAZHQFAM9rXUYsNoB0vcaAhHQDXy4RVZLZl1fZQoaAZHQFrrUcXFcY9oB00kAWgIR0A1+1/Ue+23dX2UKGgGR0BnKO/+KjzqaAdNswFoCEdAN7Omm+Cbt3V9lChoBkdAe3s2bXpW3mgHTegDaAhHQDgU2qDK5kN1fZQoaAZHQB0HPmgam41oB0sXaAhHQDgrF+/gzgx1fZQoaAZHQA+u1v2oNutoB0sUaAhHQDg+YiPhhph1fZQoaAZHQAWhr30wrUdoB0sVaAhHQDhRazNUwSJ1fZQoaAZHQHmQ4QBgeBBoB03oA2gIR0A5scOLBKtgdX2UKGgGR0B3AUU5+6RRaAdN6ANoCEdAOcy48U21lXV9lChoBkdAgDefetSydGgHTegDaAhHQDugbuMMqjJ1fZQoaAZHQHI7ia7VawFoB03oAWgIR0A7znk1dgOSdX2UKGgGR0BAGVkUbkwOaAdLYGgIR0A8BsvZh8YydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3NpZC9hbmFjb25kYTMvZW52cy91bml0Ni9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc2lkL2FuYWNvbmRhMy9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.19.0-46-generic-x86_64-with-glibc2.35 # 47~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 21 15:35:31 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.0", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.23.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 411.6911007501185, "std_reward": 29.084696231614746, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-02T21:44:55.626935"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6e7bfe7e7c1a8da91bb690969de055ad558a2468a6f75844c788724cf89a545
|
3 |
+
size 2335
|