|
---
|
|
license: mit
|
|
base_model: dbmdz/bert-base-german-uncased
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: class_classificator_results
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# class_classificator_results
|
|
|
|
This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on an unknown dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.7191
|
|
- Precision: 0.9280
|
|
- Recall: 0.9280
|
|
- F1: 0.9280
|
|
- Accuracy: 0.9280
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 2e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 500
|
|
- num_epochs: 6
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| 1.3487 | 1.0 | 2527 | 1.1844 | 0.8355 | 0.8355 | 0.8355 | 0.8355 |
|
|
| 0.9081 | 2.0 | 5054 | 0.9115 | 0.8897 | 0.8897 | 0.8897 | 0.8897 |
|
|
| 0.6327 | 3.0 | 7581 | 0.7873 | 0.9038 | 0.9038 | 0.9038 | 0.9038 |
|
|
| 0.3874 | 4.0 | 10108 | 0.7599 | 0.9196 | 0.9196 | 0.9196 | 0.9196 |
|
|
| 0.2643 | 5.0 | 12635 | 0.7191 | 0.9280 | 0.9280 | 0.9280 | 0.9280 |
|
|
| 0.2146 | 6.0 | 15162 | 0.7315 | 0.9300 | 0.9300 | 0.9300 | 0.9300 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.41.2
|
|
- Pytorch 2.0.1+cu117
|
|
- Datasets 2.20.0
|
|
- Tokenizers 0.19.1
|
|
|