update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -38,30 +38,40 @@ More information needed
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
-
- learning_rate:
|
42 |
- train_batch_size: 8
|
43 |
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9594
|
22 |
+
- Accuracy: 0.83
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
38 |
### Training hyperparameters
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 8e-05
|
42 |
- train_batch_size: 8
|
43 |
- eval_batch_size: 8
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 20
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 1.874 | 1.0 | 113 | 1.8949 | 0.42 |
|
56 |
+
| 1.2872 | 2.0 | 226 | 1.3293 | 0.57 |
|
57 |
+
| 0.9764 | 3.0 | 339 | 0.9030 | 0.72 |
|
58 |
+
| 0.5805 | 4.0 | 452 | 0.6561 | 0.83 |
|
59 |
+
| 0.4618 | 5.0 | 565 | 0.5127 | 0.87 |
|
60 |
+
| 0.1487 | 6.0 | 678 | 0.7336 | 0.77 |
|
61 |
+
| 0.1542 | 7.0 | 791 | 0.5496 | 0.84 |
|
62 |
+
| 0.267 | 8.0 | 904 | 0.6534 | 0.85 |
|
63 |
+
| 0.037 | 9.0 | 1017 | 0.7327 | 0.85 |
|
64 |
+
| 0.0089 | 10.0 | 1130 | 1.1979 | 0.76 |
|
65 |
+
| 0.0436 | 11.0 | 1243 | 1.0857 | 0.82 |
|
66 |
+
| 0.003 | 12.0 | 1356 | 0.9266 | 0.84 |
|
67 |
+
| 0.0019 | 13.0 | 1469 | 0.9791 | 0.84 |
|
68 |
+
| 0.0017 | 14.0 | 1582 | 0.9259 | 0.84 |
|
69 |
+
| 0.0015 | 15.0 | 1695 | 0.9836 | 0.83 |
|
70 |
+
| 0.0014 | 16.0 | 1808 | 1.0018 | 0.83 |
|
71 |
+
| 0.0013 | 17.0 | 1921 | 0.9896 | 0.83 |
|
72 |
+
| 0.0012 | 18.0 | 2034 | 0.9836 | 0.84 |
|
73 |
+
| 0.0012 | 19.0 | 2147 | 0.9759 | 0.84 |
|
74 |
+
| 0.0011 | 20.0 | 2260 | 0.9594 | 0.83 |
|
75 |
|
76 |
|
77 |
### Framework versions
|