whisper-small-pa-IN / README.md
shripadbhat's picture
update model card README.md
7daec4a
|
raw
history blame
2.44 kB
metadata
language:
  - pa-IN
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Panjabi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: pa-IN
          split: test
          args: pa-IN
        metrics:
          - name: Wer
            type: wer
            value: 36.10043556238791

Whisper Small Panjabi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6084
  • Wer: 36.1004

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.349 5.86 100 0.4664 49.1929
0.0175 11.74 200 0.4633 39.1494
0.0052 17.63 300 0.5317 37.7146
0.0014 23.51 400 0.5521 36.4079
0.0009 29.4 500 0.5731 35.4599
0.0002 35.29 600 0.5806 35.6649
0.0001 41.17 700 0.5933 35.7161
0.0001 47.06 800 0.6016 35.9211
0.0001 52.91 900 0.6067 36.0492
0.0001 58.8 1000 0.6084 36.1004

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2