|
from typing import Dict, List, Any |
|
|
|
class EndpointHandler(): |
|
def __init__(self , path=""): |
|
|
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
path = "shredder-31/GA_model_Gemma_2b" |
|
model = AutoModelForCausalLM.from_pretrained(path, quantization_config=bnb_config, device_map={"":0}) |
|
tokenizer = AutoTokenizer.from_pretrained(path, add_eos_token=True) |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
|
|
encodeds = self.tokenizer(data['inputs'], return_tensors="pt", add_special_tokens=True) |
|
generated_ids = self.model.generate(**encodeds, max_length=100 ,max_new_tokens=100, do_sample=False) |
|
decoded = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
|
|
return {'output':decoded[len(data['inputs']):]} |