metadata
language:
- eu
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- et
datasets:
- common_voice
- mozilla-foundation/common_voice_8_0
model-index:
- name: xls-r-eus
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: eu
metrics:
- name: Test WER
type: wer
value: 0.17871523648578164
- name: Test CER
type: cer
value: 0.032624506085144
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set:
- Loss: 0.2278
- Wer: 0.1787
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2548 | 4.24 | 500 | 0.2470 | 0.3663 |
0.1435 | 8.47 | 1000 | 0.2000 | 0.2791 |
0.1158 | 12.71 | 1500 | 0.2030 | 0.2652 |
0.1094 | 16.95 | 2000 | 0.2096 | 0.2605 |
0.1004 | 21.19 | 2500 | 0.2150 | 0.2477 |
0.0945 | 25.42 | 3000 | 0.2072 | 0.2369 |
0.0844 | 29.66 | 3500 | 0.1981 | 0.2328 |
0.0877 | 33.89 | 4000 | 0.2041 | 0.2425 |
0.0741 | 38.14 | 4500 | 0.2353 | 0.2421 |
0.0676 | 42.37 | 5000 | 0.2092 | 0.2213 |
0.0623 | 46.61 | 5500 | 0.2217 | 0.2250 |
0.0574 | 50.84 | 6000 | 0.2152 | 0.2179 |
0.0583 | 55.08 | 6500 | 0.2207 | 0.2186 |
0.0488 | 59.32 | 7000 | 0.2225 | 0.2159 |
0.0456 | 63.56 | 7500 | 0.2293 | 0.2031 |
0.041 | 67.79 | 8000 | 0.2277 | 0.2013 |
0.0379 | 72.03 | 8500 | 0.2287 | 0.1991 |
0.0381 | 76.27 | 9000 | 0.2233 | 0.1954 |
0.0308 | 80.51 | 9500 | 0.2195 | 0.1835 |
0.0291 | 84.74 | 10000 | 0.2266 | 0.1825 |
0.0266 | 88.98 | 10500 | 0.2285 | 0.1801 |
0.0266 | 93.22 | 11000 | 0.2292 | 0.1801 |
0.0262 | 97.46 | 11500 | 0.2278 | 0.1788 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0