xls-r-eus / README.md
shpotes's picture
Update README.md
ecf0f2f
|
raw
history blame
3.36 kB
metadata
language:
  - eu
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
  - et
datasets:
  - common_voice
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: xls-r-eus
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: eu
        metrics:
          - name: Test WER
            type: wer
            value: 0.17871523648578164
          - name: Test CER
            type: cer
            value: 0.032624506085144

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EU dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2278
  • Wer: 0.1787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 144
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2548 4.24 500 0.2470 0.3663
0.1435 8.47 1000 0.2000 0.2791
0.1158 12.71 1500 0.2030 0.2652
0.1094 16.95 2000 0.2096 0.2605
0.1004 21.19 2500 0.2150 0.2477
0.0945 25.42 3000 0.2072 0.2369
0.0844 29.66 3500 0.1981 0.2328
0.0877 33.89 4000 0.2041 0.2425
0.0741 38.14 4500 0.2353 0.2421
0.0676 42.37 5000 0.2092 0.2213
0.0623 46.61 5500 0.2217 0.2250
0.0574 50.84 6000 0.2152 0.2179
0.0583 55.08 6500 0.2207 0.2186
0.0488 59.32 7000 0.2225 0.2159
0.0456 63.56 7500 0.2293 0.2031
0.041 67.79 8000 0.2277 0.2013
0.0379 72.03 8500 0.2287 0.1991
0.0381 76.27 9000 0.2233 0.1954
0.0308 80.51 9500 0.2195 0.1835
0.0291 84.74 10000 0.2266 0.1825
0.0266 88.98 10500 0.2285 0.1801
0.0266 93.22 11000 0.2292 0.1801
0.0262 97.46 11500 0.2278 0.1788

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0