metadata
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisperFinetuneTakeTwo
results: []
whisperFinetuneTakeTwo
This model is a fine-tuned version of openai/whisper-tiny.en on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5685
- Wer: 26.8493
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.8768 | 0.2778 | 10 | 1.8749 | 35.4033 |
0.8301 | 0.5556 | 20 | 0.6687 | 24.9619 |
0.5543 | 0.8333 | 30 | 0.5484 | 22.9224 |
0.3902 | 1.1111 | 40 | 0.5108 | 20.3044 |
0.3395 | 1.3889 | 50 | 0.4900 | 20.6088 |
0.3255 | 1.6667 | 60 | 0.4830 | 20.7915 |
0.362 | 1.9444 | 70 | 0.4867 | 20.6393 |
0.1228 | 2.2222 | 80 | 0.5114 | 20.8524 |
0.1288 | 2.5 | 90 | 0.5299 | 21.3090 |
0.1513 | 2.7778 | 100 | 0.5685 | 26.8493 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1.dev0
- Tokenizers 0.19.1