|
--- |
|
license: apache-2.0 |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: zephyr-7b-sft-lora-accum8-lr1e_5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-7b-sft-lora-accum8-lr1e_5 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0319 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 50.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.078 | 0.51 | 6 | 2.0305 | |
|
| 2.0322 | 1.53 | 13 | 1.9523 | |
|
| 1.9301 | 2.55 | 20 | 1.8814 | |
|
| 1.8757 | 3.57 | 27 | 1.8209 | |
|
| 1.841 | 4.51 | 33 | 1.7722 | |
|
| 1.7661 | 5.53 | 40 | 1.7291 | |
|
| 1.731 | 6.55 | 47 | 1.6904 | |
|
| 1.713 | 7.57 | 54 | 1.6531 | |
|
| 1.6557 | 8.51 | 60 | 1.6243 | |
|
| 1.6319 | 9.53 | 67 | 1.5889 | |
|
| 1.5989 | 10.55 | 74 | 1.5500 | |
|
| 1.5556 | 11.57 | 81 | 1.5098 | |
|
| 1.5165 | 12.51 | 87 | 1.4754 | |
|
| 1.4945 | 13.53 | 94 | 1.4282 | |
|
| 1.4198 | 14.55 | 101 | 1.3778 | |
|
| 1.3823 | 15.57 | 108 | 1.3291 | |
|
| 1.3576 | 16.51 | 114 | 1.2925 | |
|
| 1.2917 | 17.53 | 121 | 1.2570 | |
|
| 1.2599 | 18.55 | 128 | 1.2283 | |
|
| 1.2257 | 19.57 | 135 | 1.2033 | |
|
| 1.2123 | 20.51 | 141 | 1.1905 | |
|
| 1.1966 | 21.53 | 148 | 1.1724 | |
|
| 1.1694 | 22.55 | 155 | 1.1592 | |
|
| 1.1665 | 23.57 | 162 | 1.1471 | |
|
| 1.1559 | 24.51 | 168 | 1.1369 | |
|
| 1.1383 | 25.53 | 175 | 1.1288 | |
|
| 1.141 | 26.55 | 182 | 1.1200 | |
|
| 1.1334 | 27.57 | 189 | 1.1138 | |
|
| 1.1193 | 28.51 | 195 | 1.1079 | |
|
| 1.1079 | 29.53 | 202 | 1.1016 | |
|
| 1.1188 | 30.55 | 209 | 1.0961 | |
|
| 1.1006 | 31.57 | 216 | 1.0916 | |
|
| 1.1016 | 32.51 | 222 | 1.0851 | |
|
| 1.0801 | 33.53 | 229 | 1.0783 | |
|
| 1.0846 | 34.55 | 236 | 1.0758 | |
|
| 1.0828 | 35.57 | 243 | 1.0725 | |
|
| 1.0758 | 36.51 | 249 | 1.0694 | |
|
| 1.0749 | 37.53 | 256 | 1.0646 | |
|
| 1.0626 | 38.55 | 263 | 1.0627 | |
|
| 1.0575 | 39.57 | 270 | 1.0592 | |
|
| 1.0583 | 40.51 | 276 | 1.0555 | |
|
| 1.0548 | 41.53 | 283 | 1.0518 | |
|
| 1.0495 | 42.55 | 290 | 1.0468 | |
|
| 1.0449 | 43.57 | 297 | 1.0469 | |
|
| 1.0527 | 44.51 | 303 | 1.0420 | |
|
| 1.0411 | 45.53 | 310 | 1.0415 | |
|
| 1.0325 | 46.55 | 317 | 1.0384 | |
|
| 1.0404 | 47.57 | 324 | 1.0353 | |
|
| 1.0326 | 48.51 | 330 | 1.0337 | |
|
| 1.0262 | 49.53 | 337 | 1.0317 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|