metadata
language:
- mr
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- mr
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: ''
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice Corpus 8.0
type: mozilla-foundation/common_voice_8_0
args: mr
metrics:
- name: Test WER
type: wer
value: 38.27
- name: Test CER
type: cer
value: 8.91
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set:
Without LM
- WER: 48.53
- CER: 10.63
With LM
- WER: 38.27
- CER: 8.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 400.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.2706 | 22.73 | 500 | 4.0174 | 1.0 |
3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 |
1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 |
1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 |
1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 |
0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 |
0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 |
0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 |
0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 |
0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 |
0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 |
0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 |
0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 |
0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 |
0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 |
0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 |
0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 1.18.1.dev0
- Tokenizers 0.11.0