leonardlin
commited on
Commit
•
8ebe354
1
Parent(s):
3c7268c
Update README.md
Browse files
README.md
CHANGED
@@ -17,14 +17,18 @@ Using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benc
|
|
17 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
|
18 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
|
19 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
|
|
|
20 |
| **shisa-ai/shisa-llama3-8b-v1** | **6.10**| **6.52** | **6.20** | **6.37**|**5.33** |
|
21 |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
|
22 |
| shisa-ai/shisa-gemma-7b-v1 | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 |
|
23 |
| augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 |
|
24 |
-
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20
|
25 |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
|
26 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
|
27 |
| shisa-ai/shisa-yi1.5-9b-v1 | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 |
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
17 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
|
18 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
|
19 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
|
20 |
+
| **shisa-ai/shisa-llama3-8b-v1^** | **6.29**| **6.62** | **6.41** | **7.05**|**5.07** |
|
21 |
| **shisa-ai/shisa-llama3-8b-v1** | **6.10**| **6.52** | **6.20** | **6.37**|**5.33** |
|
22 |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
|
23 |
| shisa-ai/shisa-gemma-7b-v1 | 5.64 | 6.50 | 5.42 | 5.10 | 5.55 |
|
24 |
| augmxnt/shisa-gamma-7b-v1 | 5.56 | 5.84 | 4.00 | 6.73 | 5.68 |
|
25 |
+
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
|
26 |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
|
27 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
|
28 |
| shisa-ai/shisa-yi1.5-9b-v1 | 4.63 | 5.98 | 4.28 | 3.26 | 5.00 |
|
29 |
|
30 |
+
^ Shaberi uses `temperature=0.0`, no sampling, for all generations by default. This is actually different from [JA MT-Bench's default settings](https://github.com/Stability-AI/FastChat/blob/jp-stable/fastchat/llm_judge/common.py#L37) which has different temperature per category.
|
31 |
+
This means that Shaberi's results can't be compared to other JA MT-Bench results (like [my comparison chart](https://github.com/AUGMXNT/shisa/wiki/Evals-:-JA-MT%E2%80%90Bench) or the [Nejumi Leaderboard](https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Leaderboard-Evaluating-Japanese-Language-Proficiency--Vmlldzo2MzU3NzIy)).
|
32 |
+
Like some other models, if you look at the results you'll notice repetition loops. For Llama models, you usually want something like a `repetition_penalty` of 1.15/1.18 to get rid of repetition loops.
|
33 |
+
Because Shaberi uses the vLLM's OpenAI API server, it doesn't support repetition penalty, doing a `frequency_penalty` sweep (0.0, 0.5, 0.8) I found 0.5 to remove repetitions and improve output in general. There is no decay/window so for long generations, this may not be optimal.
|
34 |
+
For the improved generations, I used the following sampler settings: `temperature 0.2, min_p 0.1, frequency_penalty 0.5` (OpenAI doesn't support min_p, but vLLM adds it and it's [basically always the superior sampler](https://github.com/huggingface/transformers/issues/27670)).
|