shibing624 commited on
Commit
b410dd9
1 Parent(s): cfbfdf4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -14
README.md CHANGED
@@ -19,11 +19,11 @@ ChatGLM3-6B中文纠错LoRA模型
19
 
20
  The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC **test**:
21
 
22
- |prefix|input_text|target_text|pred|
23
- |:-- |:--- |:--- |:-- |
24
- |对下面文本纠错:|少先队员因该为老人让坐。|少先队员应该为老人让座。|少先队员应该为老人让座。|
25
 
26
- 在CSC测试集上生成结果纠错准确率高,由于是基于ChatGLM3-6B模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。
27
 
28
 
29
  ## Usage
@@ -53,21 +53,35 @@ pip install transformers
53
  ```
54
 
55
  ```python
56
- import sys
57
- from peft import PeftModel
58
- from transformers import AutoModel, AutoTokenizer
59
 
60
- sys.path.append('..')
 
 
61
 
62
- model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device_map='auto')
63
- model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora")
64
- model = model.half().cuda() # fp16
65
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
- sents = ['对下面中文拼写纠错:\n少先队员因该为老人让坐。',
68
- '对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。']
69
  for s in sents:
70
- response = model.chat(tokenizer, s, max_length=128, eos_token_id=tokenizer.eos_token_id)
 
 
 
 
 
71
  print(response)
72
  ```
73
 
 
19
 
20
  The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC **test**:
21
 
22
+ |prefix|input_text|pred|
23
+ |:-- |:--- |:--- |
24
+ |对下面文本纠错:|少先队员因该为老人让坐。|少先队员应该为老人让座。|
25
 
26
+ 在CSC测试集上生成结果纠错准确率高,由于是基于[THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。
27
 
28
 
29
  ## Usage
 
53
  ```
54
 
55
  ```python
56
+ import os
 
 
57
 
58
+ import torch
59
+ from peft import PeftModel
60
+ from transformers import AutoTokenizer, AutoModel
61
 
62
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
 
 
63
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
64
+ model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).half().cuda()
65
+ model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora")
66
+
67
+ sents = ['对下面文本纠错\n\n少先队员因该为老人让坐。',
68
+ '对下面文本纠错\n\n下个星期,我跟我朋唷打算去法国玩儿。']
69
+
70
+
71
+ def get_prompt(user_query):
72
+ vicuna_prompt = "A chat between a curious user and an artificial intelligence assistant. " \
73
+ "The assistant gives helpful, detailed, and polite answers to the user's questions. " \
74
+ "USER: {query} ASSISTANT:"
75
+ return vicuna_prompt.format(query=user_query)
76
+
77
 
 
 
78
  for s in sents:
79
+ q = get_prompt(s)
80
+ input_ids = tokenizer(q).input_ids
81
+ generation_kwargs = dict(max_new_tokens=128, do_sample=True, temperature=0.8)
82
+ outputs = model.generate(input_ids=torch.as_tensor([input_ids]).to('cuda'), **generation_kwargs)
83
+ output_tensor = outputs[0][len(input_ids):]
84
+ response = tokenizer.decode(output_tensor, skip_special_tokens=True)
85
  print(response)
86
  ```
87