AGE_Hybrid / README.md
shhy1995's picture
Update README.md
e309aff verified
metadata
tags:
  - mteb
model-index:
  - name: AGE_Hybrid
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 54.374695963209476
          - type: cos_sim_spearman
            value: 58.61378404489695
          - type: euclidean_pearson
            value: 57.400266024507914
          - type: euclidean_spearman
            value: 58.613784047084096
          - type: manhattan_pearson
            value: 57.38157387794458
          - type: manhattan_spearman
            value: 58.574259007541265
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 54.45976756975548
          - type: cos_sim_spearman
            value: 58.02715269428664
          - type: euclidean_pearson
            value: 61.66384760865219
          - type: euclidean_spearman
            value: 58.02715269404729
          - type: manhattan_pearson
            value: 61.65225559810625
          - type: manhattan_spearman
            value: 58.01857808173552
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 49.684000000000005
          - type: f1
            value: 48.65598525270613
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 69.31255159649066
          - type: cos_sim_spearman
            value: 70.98203706268313
          - type: euclidean_pearson
            value: 70.00607736062557
          - type: euclidean_spearman
            value: 70.98203706225725
          - type: manhattan_pearson
            value: 69.99109520014915
          - type: manhattan_spearman
            value: 70.96937923489206
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 57.39428997427469
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 54.109596265048545
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 89.37069472390765
          - type: mrr
            value: 91.35595238095239
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 89.26794517307951
          - type: mrr
            value: 91.27345238095238
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 27.367
          - type: map_at_10
            value: 40.595
          - type: map_at_100
            value: 42.522
          - type: map_at_1000
            value: 42.620999999999995
          - type: map_at_3
            value: 36.236000000000004
          - type: map_at_5
            value: 38.716
          - type: mrr_at_1
            value: 41.510000000000005
          - type: mrr_at_10
            value: 49.617
          - type: mrr_at_100
            value: 50.595
          - type: mrr_at_1000
            value: 50.632999999999996
          - type: mrr_at_3
            value: 47.124
          - type: mrr_at_5
            value: 48.565000000000005
          - type: ndcg_at_1
            value: 41.510000000000005
          - type: ndcg_at_10
            value: 47.259
          - type: ndcg_at_100
            value: 54.535
          - type: ndcg_at_1000
            value: 56.21000000000001
          - type: ndcg_at_3
            value: 41.921
          - type: ndcg_at_5
            value: 44.230999999999995
          - type: precision_at_1
            value: 41.510000000000005
          - type: precision_at_10
            value: 10.448
          - type: precision_at_100
            value: 1.629
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.623
          - type: precision_at_5
            value: 17.183999999999997
          - type: recall_at_1
            value: 27.367
          - type: recall_at_10
            value: 57.809
          - type: recall_at_100
            value: 87.698
          - type: recall_at_1000
            value: 98.883
          - type: recall_at_3
            value: 41.738
          - type: recall_at_5
            value: 48.868
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 81.3950691521347
          - type: cos_sim_ap
            value: 89.42479623257792
          - type: cos_sim_f1
            value: 82.7800599533696
          - type: cos_sim_precision
            value: 78.81606765327696
          - type: cos_sim_recall
            value: 87.16389992985738
          - type: dot_accuracy
            value: 81.3950691521347
          - type: dot_ap
            value: 89.44637882076245
          - type: dot_f1
            value: 82.7800599533696
          - type: dot_precision
            value: 78.81606765327696
          - type: dot_recall
            value: 87.16389992985738
          - type: euclidean_accuracy
            value: 81.3950691521347
          - type: euclidean_ap
            value: 89.42479382288857
          - type: euclidean_f1
            value: 82.7800599533696
          - type: euclidean_precision
            value: 78.81606765327696
          - type: euclidean_recall
            value: 87.16389992985738
          - type: manhattan_accuracy
            value: 81.53938665063139
          - type: manhattan_ap
            value: 89.41695475090047
          - type: manhattan_f1
            value: 82.76245551601423
          - type: manhattan_precision
            value: 78.91834570519617
          - type: manhattan_recall
            value: 87.00023380874444
          - type: max_accuracy
            value: 81.53938665063139
          - type: max_ap
            value: 89.44637882076245
          - type: max_f1
            value: 82.7800599533696
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 71.918
          - type: map_at_10
            value: 80.068
          - type: map_at_100
            value: 80.297
          - type: map_at_1000
            value: 80.30199999999999
          - type: map_at_3
            value: 78.40700000000001
          - type: map_at_5
            value: 79.467
          - type: mrr_at_1
            value: 72.287
          - type: mrr_at_10
            value: 80.123
          - type: mrr_at_100
            value: 80.34599999999999
          - type: mrr_at_1000
            value: 80.35
          - type: mrr_at_3
            value: 78.50399999999999
          - type: mrr_at_5
            value: 79.56800000000001
          - type: ndcg_at_1
            value: 72.181
          - type: ndcg_at_10
            value: 83.664
          - type: ndcg_at_100
            value: 84.61800000000001
          - type: ndcg_at_1000
            value: 84.75
          - type: ndcg_at_3
            value: 80.353
          - type: ndcg_at_5
            value: 82.242
          - type: precision_at_1
            value: 72.181
          - type: precision_at_10
            value: 9.579
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 28.837000000000003
          - type: precision_at_5
            value: 18.251
          - type: recall_at_1
            value: 71.918
          - type: recall_at_10
            value: 94.784
          - type: recall_at_100
            value: 98.946
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 85.88
          - type: recall_at_5
            value: 90.411
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 26.898
          - type: map_at_10
            value: 82.80999999999999
          - type: map_at_100
            value: 85.41499999999999
          - type: map_at_1000
            value: 85.449
          - type: map_at_3
            value: 57.692
          - type: map_at_5
            value: 72.921
          - type: mrr_at_1
            value: 92.15
          - type: mrr_at_10
            value: 94.489
          - type: mrr_at_100
            value: 94.549
          - type: mrr_at_1000
            value: 94.551
          - type: mrr_at_3
            value: 94.22500000000001
          - type: mrr_at_5
            value: 94.375
          - type: ndcg_at_1
            value: 92.15
          - type: ndcg_at_10
            value: 89.283
          - type: ndcg_at_100
            value: 91.63900000000001
          - type: ndcg_at_1000
            value: 91.94600000000001
          - type: ndcg_at_3
            value: 88.631
          - type: ndcg_at_5
            value: 87.576
          - type: precision_at_1
            value: 92.15
          - type: precision_at_10
            value: 42.47
          - type: precision_at_100
            value: 4.814
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 79.567
          - type: precision_at_5
            value: 67.2
          - type: recall_at_1
            value: 26.898
          - type: recall_at_10
            value: 89.934
          - type: recall_at_100
            value: 97.898
          - type: recall_at_1000
            value: 99.485
          - type: recall_at_3
            value: 59.504000000000005
          - type: recall_at_5
            value: 76.827
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 54
          - type: map_at_10
            value: 64.352
          - type: map_at_100
            value: 64.845
          - type: map_at_1000
            value: 64.85600000000001
          - type: map_at_3
            value: 62.017
          - type: map_at_5
            value: 63.437
          - type: mrr_at_1
            value: 54
          - type: mrr_at_10
            value: 64.352
          - type: mrr_at_100
            value: 64.845
          - type: mrr_at_1000
            value: 64.85600000000001
          - type: mrr_at_3
            value: 62.017
          - type: mrr_at_5
            value: 63.437
          - type: ndcg_at_1
            value: 54
          - type: ndcg_at_10
            value: 69.284
          - type: ndcg_at_100
            value: 71.544
          - type: ndcg_at_1000
            value: 71.82600000000001
          - type: ndcg_at_3
            value: 64.56
          - type: ndcg_at_5
            value: 67.096
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 8.469999999999999
          - type: precision_at_100
            value: 0.95
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 23.967
          - type: precision_at_5
            value: 15.6
          - type: recall_at_1
            value: 54
          - type: recall_at_10
            value: 84.7
          - type: recall_at_100
            value: 95
          - type: recall_at_1000
            value: 97.2
          - type: recall_at_3
            value: 71.89999999999999
          - type: recall_at_5
            value: 78
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.773759138130046
          - type: f1
            value: 40.26448545790716
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.94183864915573
          - type: ap
            value: 55.767096662593886
          - type: f1
            value: 81.6651183069687
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 71.87746311678752
          - type: cos_sim_spearman
            value: 78.14244626549261
          - type: euclidean_pearson
            value: 77.64591562255025
          - type: euclidean_spearman
            value: 78.14244847987706
          - type: manhattan_pearson
            value: 77.6367858272359
          - type: manhattan_spearman
            value: 78.13184444922685
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 29.638329783788777
          - type: mrr
            value: 28.496825396825397
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 68.235
          - type: map_at_10
            value: 77.116
          - type: map_at_100
            value: 77.415
          - type: map_at_1000
            value: 77.42599999999999
          - type: map_at_3
            value: 75.42
          - type: map_at_5
            value: 76.497
          - type: mrr_at_1
            value: 70.544
          - type: mrr_at_10
            value: 77.69200000000001
          - type: mrr_at_100
            value: 77.949
          - type: mrr_at_1000
            value: 77.958
          - type: mrr_at_3
            value: 76.227
          - type: mrr_at_5
            value: 77.16300000000001
          - type: ndcg_at_1
            value: 70.544
          - type: ndcg_at_10
            value: 80.648
          - type: ndcg_at_100
            value: 81.953
          - type: ndcg_at_1000
            value: 82.215
          - type: ndcg_at_3
            value: 77.43299999999999
          - type: ndcg_at_5
            value: 79.256
          - type: precision_at_1
            value: 70.544
          - type: precision_at_10
            value: 9.669
          - type: precision_at_100
            value: 1.032
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 29.059
          - type: precision_at_5
            value: 18.41
          - type: recall_at_1
            value: 68.235
          - type: recall_at_10
            value: 90.941
          - type: recall_at_100
            value: 96.784
          - type: recall_at_1000
            value: 98.799
          - type: recall_at_3
            value: 82.422
          - type: recall_at_5
            value: 86.76899999999999
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 80.59852051109617
          - type: f1
            value: 76.44360152392117
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 87.42098184263618
          - type: f1
            value: 86.90267126983493
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 57.3
          - type: map_at_10
            value: 63.04
          - type: map_at_100
            value: 63.552
          - type: map_at_1000
            value: 63.596
          - type: map_at_3
            value: 61.733000000000004
          - type: map_at_5
            value: 62.407999999999994
          - type: mrr_at_1
            value: 57.4
          - type: mrr_at_10
            value: 63.074
          - type: mrr_at_100
            value: 63.586
          - type: mrr_at_1000
            value: 63.629000000000005
          - type: mrr_at_3
            value: 61.767
          - type: mrr_at_5
            value: 62.442
          - type: ndcg_at_1
            value: 57.3
          - type: ndcg_at_10
            value: 65.935
          - type: ndcg_at_100
            value: 68.679
          - type: ndcg_at_1000
            value: 69.89699999999999
          - type: ndcg_at_3
            value: 63.164
          - type: ndcg_at_5
            value: 64.39
          - type: precision_at_1
            value: 57.3
          - type: precision_at_10
            value: 7.51
          - type: precision_at_100
            value: 0.885
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 22.433
          - type: precision_at_5
            value: 14.06
          - type: recall_at_1
            value: 57.3
          - type: recall_at_10
            value: 75.1
          - type: recall_at_100
            value: 88.5
          - type: recall_at_1000
            value: 98.2
          - type: recall_at_3
            value: 67.30000000000001
          - type: recall_at_5
            value: 70.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 75.92333333333332
          - type: f1
            value: 75.92561004846668
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 80.67135896047645
          - type: cos_sim_ap
            value: 84.74126732324031
          - type: cos_sim_f1
            value: 82.35872235872236
          - type: cos_sim_precision
            value: 77.02205882352942
          - type: cos_sim_recall
            value: 88.48996832101372
          - type: dot_accuracy
            value: 80.67135896047645
          - type: dot_ap
            value: 84.74126732324031
          - type: dot_f1
            value: 82.35872235872236
          - type: dot_precision
            value: 77.02205882352942
          - type: dot_recall
            value: 88.48996832101372
          - type: euclidean_accuracy
            value: 80.67135896047645
          - type: euclidean_ap
            value: 84.74126732324031
          - type: euclidean_f1
            value: 82.35872235872236
          - type: euclidean_precision
            value: 77.02205882352942
          - type: euclidean_recall
            value: 88.48996832101372
          - type: manhattan_accuracy
            value: 80.94206821873307
          - type: manhattan_ap
            value: 84.77475030952647
          - type: manhattan_f1
            value: 82.40963855421687
          - type: manhattan_precision
            value: 75.79787234042553
          - type: manhattan_recall
            value: 90.28511087645195
          - type: max_accuracy
            value: 80.94206821873307
          - type: max_ap
            value: 84.77475030952647
          - type: max_f1
            value: 82.40963855421687
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 94.02999999999999
          - type: ap
            value: 92.56102428258882
          - type: f1
            value: 94.0218595765633
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 40.66196618410644
          - type: cos_sim_spearman
            value: 45.59387881622271
          - type: euclidean_pearson
            value: 45.30405962406599
          - type: euclidean_spearman
            value: 45.59200166442107
          - type: manhattan_pearson
            value: 45.2855547329122
          - type: manhattan_spearman
            value: 45.56029930327916
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 35.80405912029715
          - type: cos_sim_spearman
            value: 38.103568973803924
          - type: euclidean_pearson
            value: 36.074590892427224
          - type: euclidean_spearman
            value: 38.10356138638113
          - type: manhattan_pearson
            value: 36.10927406952271
          - type: manhattan_spearman
            value: 38.124281585018494
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 63.46248249776727
          - type: cos_sim_spearman
            value: 65.33629395139023
          - type: euclidean_pearson
            value: 64.18937868341659
          - type: euclidean_spearman
            value: 65.33629395139023
          - type: manhattan_pearson
            value: 64.28420729517235
          - type: manhattan_spearman
            value: 65.38418816375115
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 82.13859545037208
          - type: cos_sim_spearman
            value: 82.42477317499657
          - type: euclidean_pearson
            value: 81.93620307339366
          - type: euclidean_spearman
            value: 82.42477317499657
          - type: manhattan_pearson
            value: 81.93897401643665
          - type: manhattan_spearman
            value: 82.42900199602553
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.61171519094763
          - type: mrr
            value: 76.28728466109982
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 28.750999999999998
          - type: map_at_10
            value: 79.785
          - type: map_at_100
            value: 83.286
          - type: map_at_1000
            value: 83.344
          - type: map_at_3
            value: 56.525000000000006
          - type: map_at_5
            value: 69.242
          - type: mrr_at_1
            value: 92.23700000000001
          - type: mrr_at_10
            value: 94.248
          - type: mrr_at_100
            value: 94.306
          - type: mrr_at_1000
            value: 94.308
          - type: mrr_at_3
            value: 93.894
          - type: mrr_at_5
            value: 94.11500000000001
          - type: ndcg_at_1
            value: 92.23700000000001
          - type: ndcg_at_10
            value: 86.87700000000001
          - type: ndcg_at_100
            value: 90.125
          - type: ndcg_at_1000
            value: 90.66
          - type: ndcg_at_3
            value: 88.483
          - type: ndcg_at_5
            value: 87.042
          - type: precision_at_1
            value: 92.23700000000001
          - type: precision_at_10
            value: 42.712
          - type: precision_at_100
            value: 5.038
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_3
            value: 77.095
          - type: precision_at_5
            value: 64.442
          - type: recall_at_1
            value: 28.750999999999998
          - type: recall_at_10
            value: 85.49600000000001
          - type: recall_at_100
            value: 96.13199999999999
          - type: recall_at_1000
            value: 98.785
          - type: recall_at_3
            value: 57.93000000000001
          - type: recall_at_5
            value: 72.151
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 52.689
          - type: f1
            value: 51.51955890162233
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 79.15418821175516
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 75.904971040467
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 64.2
          - type: map_at_10
            value: 72.923
          - type: map_at_100
            value: 73.34
          - type: map_at_1000
            value: 73.35000000000001
          - type: map_at_3
            value: 71.48299999999999
          - type: map_at_5
            value: 72.40299999999999
          - type: mrr_at_1
            value: 64.2
          - type: mrr_at_10
            value: 72.923
          - type: mrr_at_100
            value: 73.34
          - type: mrr_at_1000
            value: 73.35000000000001
          - type: mrr_at_3
            value: 71.48299999999999
          - type: mrr_at_5
            value: 72.40299999999999
          - type: ndcg_at_1
            value: 64.2
          - type: ndcg_at_10
            value: 76.79
          - type: ndcg_at_100
            value: 78.744
          - type: ndcg_at_1000
            value: 78.95
          - type: ndcg_at_3
            value: 73.899
          - type: ndcg_at_5
            value: 75.53
          - type: precision_at_1
            value: 64.2
          - type: precision_at_10
            value: 8.870000000000001
          - type: precision_at_100
            value: 0.976
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 26.967000000000002
          - type: precision_at_5
            value: 16.96
          - type: recall_at_1
            value: 64.2
          - type: recall_at_10
            value: 88.7
          - type: recall_at_100
            value: 97.6
          - type: recall_at_1000
            value: 99.1
          - type: recall_at_3
            value: 80.9
          - type: recall_at_5
            value: 84.8
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 88.23
          - type: ap
            value: 72.99710316362655
          - type: f1
            value: 86.7822647711214
language:
  - zh
license: mit

ANT General text Embedding(AGE) Hybird