metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: my_awesome_mind_model
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: minds14
type: minds14
config: en-US
split: train
args: en-US
metrics:
- name: Accuracy
type: accuracy
value: 0.061946902654867256
my_awesome_mind_model
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 2.6953
- Accuracy: 0.0619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 3 | 2.6477 | 0.0708 |
No log | 1.9333 | 7 | 2.6612 | 0.0619 |
2.6309 | 2.8 | 10 | 2.6706 | 0.0708 |
2.6309 | 3.9333 | 14 | 2.6782 | 0.0796 |
2.6309 | 4.8 | 17 | 2.6847 | 0.0619 |
2.6133 | 5.9333 | 21 | 2.6933 | 0.0619 |
2.6133 | 6.8 | 24 | 2.6951 | 0.0619 |
2.6133 | 7.9333 | 28 | 2.6950 | 0.0619 |
2.603 | 8.5333 | 30 | 2.6953 | 0.0619 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3