scipaper-summary / README.md
shed-e's picture
update model card README.md
1463184
|
raw
history blame
2.4 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - scitldr
metrics:
  - rouge
model-index:
  - name: paper-summary
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: scitldr
          type: scitldr
          config: Abstract
          split: train
          args: Abstract
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.3484

paper-summary

This model is a fine-tuned version of t5-small on the scitldr dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8631
  • Rouge1: 0.3484
  • Rouge2: 0.1596
  • Rougel: 0.2971
  • Rougelsum: 0.3047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.0545 1.0 63 2.9939 0.3387 0.1538 0.2887 0.2957
2.7871 2.0 126 2.9360 0.3448 0.1577 0.2947 0.3019
2.7188 3.0 189 2.8977 0.3477 0.1585 0.2967 0.3035
2.6493 4.0 252 2.8837 0.3488 0.1597 0.2973 0.3046
2.6207 5.0 315 2.8690 0.3472 0.1566 0.2958 0.3033
2.5893 6.0 378 2.8668 0.3493 0.1592 0.2972 0.305
2.5494 7.0 441 2.8657 0.3486 0.1595 0.2976 0.3053
2.5554 8.0 504 2.8631 0.3484 0.1596 0.2971 0.3047

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1