metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- scitldr
metrics:
- rouge
base_model: t5-small
model-index:
- name: paper-summary
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: scitldr
type: scitldr
config: Abstract
split: train
args: Abstract
metrics:
- type: rouge
value: 0.3484
name: Rouge1
paper-summary
This model is a fine-tuned version of t5-small on the scitldr dataset. It achieves the following results on the evaluation set:
- Loss: 2.8631
- Rouge1: 0.3484
- Rouge2: 0.1596
- Rougel: 0.2971
- Rougelsum: 0.3047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.0545 | 1.0 | 63 | 2.9939 | 0.3387 | 0.1538 | 0.2887 | 0.2957 |
2.7871 | 2.0 | 126 | 2.9360 | 0.3448 | 0.1577 | 0.2947 | 0.3019 |
2.7188 | 3.0 | 189 | 2.8977 | 0.3477 | 0.1585 | 0.2967 | 0.3035 |
2.6493 | 4.0 | 252 | 2.8837 | 0.3488 | 0.1597 | 0.2973 | 0.3046 |
2.6207 | 5.0 | 315 | 2.8690 | 0.3472 | 0.1566 | 0.2958 | 0.3033 |
2.5893 | 6.0 | 378 | 2.8668 | 0.3493 | 0.1592 | 0.2972 | 0.305 |
2.5494 | 7.0 | 441 | 2.8657 | 0.3486 | 0.1595 | 0.2976 | 0.3053 |
2.5554 | 8.0 | 504 | 2.8631 | 0.3484 | 0.1596 | 0.2971 | 0.3047 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1