|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.0318 |
|
- Rouge1: 0.1806 |
|
- Rouge2: 0.0917 |
|
- Rougel: 0.1765 |
|
- Rougelsum: 0.1766 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 6.6121 | 1.0 | 1209 | 3.2969 | 0.1522 | 0.0635 | 0.1476 | 0.147 | |
|
| 3.901 | 2.0 | 2418 | 3.1307 | 0.1672 | 0.0821 | 0.1604 | 0.1602 | |
|
| 3.5788 | 3.0 | 3627 | 3.0910 | 0.1804 | 0.0922 | 0.1748 | 0.1751 | |
|
| 3.4198 | 4.0 | 4836 | 3.0646 | 0.1717 | 0.0813 | 0.167 | 0.1664 | |
|
| 3.321 | 5.0 | 6045 | 3.0659 | 0.1782 | 0.0877 | 0.1759 | 0.1756 | |
|
| 3.2441 | 6.0 | 7254 | 3.0407 | 0.1785 | 0.088 | 0.1755 | 0.1751 | |
|
| 3.2075 | 7.0 | 8463 | 3.0356 | 0.1789 | 0.09 | 0.1743 | 0.1747 | |
|
| 3.1803 | 8.0 | 9672 | 3.0318 | 0.1806 | 0.0917 | 0.1765 | 0.1766 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|