|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
|
from transformers import HubertModel, Wav2Vec2FeatureExtractor |
|
|
from fairseq import checkpoint_utils |
|
|
from encoder.hubert.model import HubertSoft |
|
|
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present |
|
|
from torchaudio.transforms import Resample |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CREPE_RESAMPLE_KERNEL = {} |
|
|
F0_KERNEL = {} |
|
|
|
|
|
class Units_Encoder: |
|
|
def __init__(self, encoder, encoder_ckpt, encoder_sample_rate = 16000, encoder_hop_size = 320, device = None, |
|
|
cnhubertsoft_gate=10): |
|
|
if device is None: |
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
self.device = device |
|
|
|
|
|
is_loaded_encoder = False |
|
|
if encoder == 'hubertsoft': |
|
|
self.model = Audio2HubertSoft(encoder_ckpt).to(device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'hubertbase': |
|
|
self.model = Audio2HubertBase(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'hubertbase768': |
|
|
self.model = Audio2HubertBase768(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'hubertbase768l12': |
|
|
self.model = Audio2HubertBase768L12(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'hubertlarge1024l24': |
|
|
self.model = Audio2HubertLarge1024L24(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'contentvec': |
|
|
self.model = Audio2ContentVec(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'contentvec768': |
|
|
self.model = Audio2ContentVec768(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'contentvec768l12': |
|
|
self.model = Audio2ContentVec768L12(encoder_ckpt, device=device) |
|
|
is_loaded_encoder = True |
|
|
if encoder == 'cnhubertsoftfish': |
|
|
self.model = CNHubertSoftFish(encoder_ckpt, device=device, gate_size=cnhubertsoft_gate) |
|
|
is_loaded_encoder = True |
|
|
if not is_loaded_encoder: |
|
|
raise ValueError(f" [x] Unknown units encoder: {encoder}") |
|
|
|
|
|
self.resample_kernel = {} |
|
|
self.encoder_sample_rate = encoder_sample_rate |
|
|
self.encoder_hop_size = encoder_hop_size |
|
|
|
|
|
def encode(self, |
|
|
audio, |
|
|
sample_rate, |
|
|
hop_size): |
|
|
|
|
|
|
|
|
if sample_rate == self.encoder_sample_rate: |
|
|
audio_res = audio |
|
|
else: |
|
|
key_str = str(sample_rate) |
|
|
if key_str not in self.resample_kernel: |
|
|
self.resample_kernel[key_str] = Resample(sample_rate, self.encoder_sample_rate, lowpass_filter_width = 128).to(self.device) |
|
|
audio_res = self.resample_kernel[key_str](audio) |
|
|
|
|
|
|
|
|
if audio_res.size(-1) < 400: |
|
|
audio_res = torch.nn.functional.pad(audio, (0, 400 - audio_res.size(-1))) |
|
|
units = self.model(audio_res) |
|
|
|
|
|
|
|
|
n_frames = audio.size(-1) // hop_size + 1 |
|
|
ratio = (hop_size / sample_rate) / (self.encoder_hop_size / self.encoder_sample_rate) |
|
|
index = torch.clamp(torch.round(ratio * torch.arange(n_frames).to(self.device)).long(), max = units.size(1) - 1) |
|
|
units_aligned = torch.gather(units, 1, index.unsqueeze(0).unsqueeze(-1).repeat([1, 1, units.size(-1)])) |
|
|
return units_aligned |
|
|
|
|
|
def batch_encode(self, |
|
|
audio, |
|
|
sample_rate, |
|
|
hop_size): |
|
|
units_aligned_batch = [] |
|
|
for i in range(audio.size(0)): |
|
|
audio |
|
|
|
|
|
if sample_rate == self.encoder_sample_rate: |
|
|
audio_res = audio[i] |
|
|
else: |
|
|
key_str = str(sample_rate) |
|
|
if key_str not in self.resample_kernel: |
|
|
self.resample_kernel[key_str] = Resample(sample_rate, self.encoder_sample_rate, lowpass_filter_width = 128).to(self.device) |
|
|
audio_res = self.resample_kernel[key_str](audio[i]) |
|
|
|
|
|
|
|
|
if audio_res.size(-1) < 400: |
|
|
audio_res = torch.nn.functional.pad(audio[i], (0, 400 - audio_res.size(-1))) |
|
|
units = self.model(audio_res) |
|
|
|
|
|
|
|
|
n_frames = audio.size(-1) // hop_size + 1 |
|
|
ratio = (hop_size / sample_rate) / (self.encoder_hop_size / self.encoder_sample_rate) |
|
|
index = torch.clamp(torch.round(ratio * torch.arange(n_frames).to(self.device)).long(), max = units.size(1) - 1) |
|
|
units_aligned = torch.gather(units, 1, index.unsqueeze(0).unsqueeze(-1).repeat([1, 1, units.size(-1)])) |
|
|
units_aligned_batch.append(units_aligned.squeeze(0)) |
|
|
return torch.stack(units_aligned_batch, 0) |
|
|
|
|
|
|
|
|
class Audio2HubertSoft(torch.nn.Module): |
|
|
def __init__(self, path, h_sample_rate = 16000, h_hop_size = 320): |
|
|
super().__init__() |
|
|
print(' [Encoder Model] HuBERT Soft') |
|
|
self.hubert = HubertSoft() |
|
|
print(' [Loading] ' + path) |
|
|
checkpoint = torch.load(path) |
|
|
consume_prefix_in_state_dict_if_present(checkpoint, "module.") |
|
|
self.hubert.load_state_dict(checkpoint) |
|
|
self.hubert.eval() |
|
|
|
|
|
def forward(self, |
|
|
audio): |
|
|
with torch.inference_mode(): |
|
|
units = self.hubert.units(audio.unsqueeze(1)) |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2ContentVec(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] Content Vec') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
|
|
|
wav_tensor = audio |
|
|
feats = wav_tensor.view(1, -1) |
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": feats.to(wav_tensor.device), |
|
|
"padding_mask": padding_mask.to(wav_tensor.device), |
|
|
"output_layer": 9, |
|
|
} |
|
|
with torch.no_grad(): |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
feats = self.hubert.final_proj(logits[0]) |
|
|
units = feats |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2ContentVec768(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] Content Vec') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
|
|
|
wav_tensor = audio |
|
|
print('wav_tensor.shape: ', wav_tensor.shape) |
|
|
feats = wav_tensor.view(1, -1) |
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": feats.to(wav_tensor.device), |
|
|
"padding_mask": padding_mask.to(wav_tensor.device), |
|
|
"output_layer": 9, |
|
|
} |
|
|
with torch.no_grad(): |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
feats = logits[0] |
|
|
units = feats |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2ContentVec768L12(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] Content Vec') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
|
|
|
wav_tensor = audio |
|
|
feats = wav_tensor.view(1, -1) |
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": feats.to(wav_tensor.device), |
|
|
"padding_mask": padding_mask.to(wav_tensor.device), |
|
|
"output_layer": 12, |
|
|
} |
|
|
with torch.no_grad(): |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
feats = logits[0] |
|
|
units = feats |
|
|
return units |
|
|
|
|
|
|
|
|
class CNHubertSoftFish(torch.nn.Module): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu', gate_size=10): |
|
|
super().__init__() |
|
|
self.device = device |
|
|
self.gate_size = gate_size |
|
|
|
|
|
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
|
"./pretrain/TencentGameMate/chinese-hubert-base") |
|
|
self.model = HubertModel.from_pretrained("./pretrain/TencentGameMate/chinese-hubert-base") |
|
|
self.proj = torch.nn.Sequential(torch.nn.Dropout(0.1), torch.nn.Linear(768, 256)) |
|
|
|
|
|
|
|
|
state_dict = torch.load(path, map_location=device) |
|
|
self.load_state_dict(state_dict) |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, audio): |
|
|
input_values = self.feature_extractor( |
|
|
audio, sampling_rate=16000, return_tensors="pt" |
|
|
).input_values |
|
|
input_values = input_values.to(self.model.device) |
|
|
|
|
|
return self._forward(input_values[0]) |
|
|
|
|
|
@torch.no_grad() |
|
|
def _forward(self, input_values): |
|
|
features = self.model(input_values) |
|
|
features = self.proj(features.last_hidden_state) |
|
|
|
|
|
|
|
|
topk, indices = torch.topk(features, self.gate_size, dim=2) |
|
|
features = torch.zeros_like(features).scatter(2, indices, topk) |
|
|
features = features / features.sum(2, keepdim=True) |
|
|
|
|
|
return features.to(self.device) |
|
|
|
|
|
|
|
|
class Audio2HubertBase(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] HuBERT Base') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert = self.hubert.float() |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
with torch.no_grad(): |
|
|
padding_mask = torch.BoolTensor(audio.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": audio.to(self.device), |
|
|
"padding_mask": padding_mask.to(self.device), |
|
|
"output_layer": 9, |
|
|
} |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
units = self.hubert.final_proj(logits[0]) |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2HubertBase768(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] HuBERT Base') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert = self.hubert.float() |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
with torch.no_grad(): |
|
|
padding_mask = torch.BoolTensor(audio.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": audio.to(self.device), |
|
|
"padding_mask": padding_mask.to(self.device), |
|
|
"output_layer": 9, |
|
|
} |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
units = logits[0] |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2HubertBase768L12(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] HuBERT Base') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert = self.hubert.float() |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
with torch.no_grad(): |
|
|
padding_mask = torch.BoolTensor(audio.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": audio.to(self.device), |
|
|
"padding_mask": padding_mask.to(self.device), |
|
|
"output_layer": 12, |
|
|
} |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
units = logits[0] |
|
|
return units |
|
|
|
|
|
|
|
|
class Audio2HubertLarge1024L24(): |
|
|
def __init__(self, path, h_sample_rate=16000, h_hop_size=320, device='cpu'): |
|
|
self.device = device |
|
|
print(' [Encoder Model] HuBERT Base') |
|
|
print(' [Loading] ' + path) |
|
|
self.models, self.saved_cfg, self.task = checkpoint_utils.load_model_ensemble_and_task([path], suffix="", ) |
|
|
self.hubert = self.models[0] |
|
|
self.hubert = self.hubert.to(self.device) |
|
|
self.hubert = self.hubert.float() |
|
|
self.hubert.eval() |
|
|
|
|
|
def __call__(self, |
|
|
audio): |
|
|
with torch.no_grad(): |
|
|
padding_mask = torch.BoolTensor(audio.shape).fill_(False) |
|
|
inputs = { |
|
|
"source": audio.to(self.device), |
|
|
"padding_mask": padding_mask.to(self.device), |
|
|
"output_layer": 24, |
|
|
} |
|
|
logits = self.hubert.extract_features(**inputs) |
|
|
units = logits[0] |
|
|
return units |