Model save
Browse files- README.md +90 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: vit-epsilon-1e-7
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# vit-epsilon-1e-7
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6523
|
24 |
+
- Accuracy: 0.8714
|
25 |
+
- Precision: 0.8675
|
26 |
+
- Recall: 0.8714
|
27 |
+
- F1: 0.8677
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- lr_scheduler_warmup_steps: 1733
|
53 |
+
- num_epochs: 100
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
60 |
+
| 1.765 | 1.0 | 321 | 0.9570 | 0.6917 | 0.6487 | 0.6917 | 0.6531 |
|
61 |
+
| 1.1815 | 2.0 | 642 | 0.6949 | 0.7559 | 0.7315 | 0.7559 | 0.7314 |
|
62 |
+
| 1.0605 | 3.0 | 963 | 0.6213 | 0.7715 | 0.7649 | 0.7715 | 0.7530 |
|
63 |
+
| 1.0147 | 4.0 | 1284 | 0.5768 | 0.7732 | 0.7807 | 0.7732 | 0.7734 |
|
64 |
+
| 0.93 | 5.0 | 1605 | 0.6572 | 0.7587 | 0.7940 | 0.7587 | 0.7662 |
|
65 |
+
| 0.9793 | 6.0 | 1926 | 0.6165 | 0.7701 | 0.7940 | 0.7701 | 0.7742 |
|
66 |
+
| 0.8662 | 7.0 | 2247 | 0.6535 | 0.7240 | 0.8098 | 0.7240 | 0.7456 |
|
67 |
+
| 0.7767 | 8.0 | 2568 | 0.5813 | 0.7566 | 0.8124 | 0.7566 | 0.7733 |
|
68 |
+
| 0.7572 | 9.0 | 2889 | 0.5385 | 0.8145 | 0.8131 | 0.8145 | 0.8114 |
|
69 |
+
| 0.7003 | 10.0 | 3210 | 0.5355 | 0.8027 | 0.8276 | 0.8027 | 0.8093 |
|
70 |
+
| 0.6316 | 11.0 | 3531 | 0.6285 | 0.7653 | 0.8322 | 0.7653 | 0.7816 |
|
71 |
+
| 0.5723 | 12.0 | 3852 | 0.5775 | 0.8017 | 0.8279 | 0.8017 | 0.8105 |
|
72 |
+
| 0.4717 | 13.0 | 4173 | 0.5348 | 0.8350 | 0.8391 | 0.8350 | 0.8350 |
|
73 |
+
| 0.4472 | 14.0 | 4494 | 0.5469 | 0.8239 | 0.8442 | 0.8239 | 0.8299 |
|
74 |
+
| 0.3764 | 15.0 | 4815 | 0.5738 | 0.8291 | 0.8501 | 0.8291 | 0.8355 |
|
75 |
+
| 0.3346 | 16.0 | 5136 | 0.5368 | 0.8436 | 0.8512 | 0.8436 | 0.8461 |
|
76 |
+
| 0.2826 | 17.0 | 5457 | 0.5510 | 0.8474 | 0.8489 | 0.8474 | 0.8468 |
|
77 |
+
| 0.2659 | 18.0 | 5778 | 0.5467 | 0.8547 | 0.8560 | 0.8547 | 0.8549 |
|
78 |
+
| 0.2545 | 19.0 | 6099 | 0.6156 | 0.8433 | 0.8617 | 0.8433 | 0.8487 |
|
79 |
+
| 0.2123 | 20.0 | 6420 | 0.6871 | 0.8429 | 0.8499 | 0.8429 | 0.8427 |
|
80 |
+
| 0.1655 | 21.0 | 6741 | 0.6139 | 0.8610 | 0.8552 | 0.8610 | 0.8567 |
|
81 |
+
| 0.1246 | 22.0 | 7062 | 0.6129 | 0.8675 | 0.8681 | 0.8675 | 0.8677 |
|
82 |
+
| 0.1394 | 23.0 | 7383 | 0.6523 | 0.8714 | 0.8675 | 0.8714 | 0.8677 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.40.0.dev0
|
88 |
+
- Pytorch 2.2.1+cu121
|
89 |
+
- Datasets 2.18.0
|
90 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343239356
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2808f6165151ed9c62538b0df5ae6e867ddfb573ecfdb2ec119129734ba1bd3f
|
3 |
size 343239356
|