shane062's picture
End of training
6a648a9 verified
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper-medium-production
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 34.21052631578947

whisper-medium-production

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3373
  • Wer Ortho: 34.2105
  • Wer: 34.2105

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 30
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0296 20.0 60 0.3520 50.0 47.3684
0.0001 40.0 120 0.3399 34.2105 34.2105
0.0 60.0 180 0.3378 34.2105 34.2105
0.0 80.0 240 0.3370 34.2105 34.2105
0.0 100.0 300 0.3373 34.2105 34.2105

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1