VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
b638440
import os | |
from dataclasses import astuple | |
from typing import Callable, Optional | |
import gym | |
from gym.vector.async_vector_env import AsyncVectorEnv | |
from gym.vector.sync_vector_env import SyncVectorEnv | |
from gym.wrappers.frame_stack import FrameStack | |
from gym.wrappers.gray_scale_observation import GrayScaleObservation | |
from gym.wrappers.resize_observation import ResizeObservation | |
from stable_baselines3.common.atari_wrappers import MaxAndSkipEnv, NoopResetEnv | |
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv | |
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv | |
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from rl_algo_impls.runner.config import Config, EnvHyperparams | |
from rl_algo_impls.shared.policy.policy import VEC_NORMALIZE_FILENAME | |
from rl_algo_impls.shared.vec_env.utils import ( | |
import_for_env_id, | |
is_atari, | |
is_bullet_env, | |
is_car_racing, | |
is_gym_procgen, | |
is_microrts, | |
) | |
from rl_algo_impls.wrappers.action_mask_wrapper import SingleActionMaskWrapper | |
from rl_algo_impls.wrappers.atari_wrappers import ( | |
ClipRewardEnv, | |
EpisodicLifeEnv, | |
FireOnLifeStarttEnv, | |
) | |
from rl_algo_impls.wrappers.episode_record_video import EpisodeRecordVideo | |
from rl_algo_impls.wrappers.episode_stats_writer import EpisodeStatsWriter | |
from rl_algo_impls.wrappers.hwc_to_chw_observation import HwcToChwObservation | |
from rl_algo_impls.wrappers.initial_step_truncate_wrapper import ( | |
InitialStepTruncateWrapper, | |
) | |
from rl_algo_impls.wrappers.is_vector_env import IsVectorEnv | |
from rl_algo_impls.wrappers.no_reward_timeout import NoRewardTimeout | |
from rl_algo_impls.wrappers.noop_env_seed import NoopEnvSeed | |
from rl_algo_impls.wrappers.normalize import NormalizeObservation, NormalizeReward | |
from rl_algo_impls.wrappers.sync_vector_env_render_compat import ( | |
SyncVectorEnvRenderCompat, | |
) | |
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv | |
from rl_algo_impls.wrappers.video_compat_wrapper import VideoCompatWrapper | |
def make_vec_env( | |
config: Config, | |
hparams: EnvHyperparams, | |
training: bool = True, | |
render: bool = False, | |
normalize_load_path: Optional[str] = None, | |
tb_writer: Optional[SummaryWriter] = None, | |
) -> VecEnv: | |
( | |
env_type, | |
n_envs, | |
frame_stack, | |
make_kwargs, | |
no_reward_timeout_steps, | |
no_reward_fire_steps, | |
vec_env_class, | |
normalize, | |
normalize_kwargs, | |
rolling_length, | |
train_record_video, | |
video_step_interval, | |
initial_steps_to_truncate, | |
clip_atari_rewards, | |
normalize_type, | |
mask_actions, | |
_, # bots | |
_, # self_play_kwargs | |
_, # selfplay_bots | |
) = astuple(hparams) | |
import_for_env_id(config.env_id) | |
seed = config.seed(training=training) | |
make_kwargs = make_kwargs.copy() if make_kwargs is not None else {} | |
if is_bullet_env(config) and render: | |
make_kwargs["render"] = True | |
if is_car_racing(config): | |
make_kwargs["verbose"] = 0 | |
if is_gym_procgen(config) and not render: | |
make_kwargs["render_mode"] = "rgb_array" | |
def make(idx: int) -> Callable[[], gym.Env]: | |
def _make() -> gym.Env: | |
env = gym.make(config.env_id, **make_kwargs) | |
env = gym.wrappers.RecordEpisodeStatistics(env) | |
env = VideoCompatWrapper(env) | |
if training and train_record_video and idx == 0: | |
env = EpisodeRecordVideo( | |
env, | |
config.video_prefix, | |
step_increment=n_envs, | |
video_step_interval=int(video_step_interval), | |
) | |
if training and initial_steps_to_truncate: | |
env = InitialStepTruncateWrapper( | |
env, idx * initial_steps_to_truncate // n_envs | |
) | |
if is_atari(config): # type: ignore | |
env = NoopResetEnv(env, noop_max=30) | |
env = MaxAndSkipEnv(env, skip=4) | |
env = EpisodicLifeEnv(env, training=training) | |
action_meanings = env.unwrapped.get_action_meanings() | |
if "FIRE" in action_meanings: # type: ignore | |
env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE")) | |
if clip_atari_rewards: | |
env = ClipRewardEnv(env, training=training) | |
env = ResizeObservation(env, (84, 84)) | |
env = GrayScaleObservation(env, keep_dim=False) | |
env = FrameStack(env, frame_stack) | |
elif is_car_racing(config): | |
env = ResizeObservation(env, (64, 64)) | |
env = GrayScaleObservation(env, keep_dim=False) | |
env = FrameStack(env, frame_stack) | |
elif is_gym_procgen(config): | |
# env = GrayScaleObservation(env, keep_dim=False) | |
env = NoopEnvSeed(env) | |
env = HwcToChwObservation(env) | |
if frame_stack > 1: | |
env = FrameStack(env, frame_stack) | |
elif is_microrts(config): | |
env = HwcToChwObservation(env) | |
if no_reward_timeout_steps: | |
env = NoRewardTimeout( | |
env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps | |
) | |
if seed is not None: | |
env.seed(seed + idx) | |
env.action_space.seed(seed + idx) | |
env.observation_space.seed(seed + idx) | |
return env | |
return _make | |
if env_type == "sb3vec": | |
VecEnvClass = {"sync": DummyVecEnv, "async": SubprocVecEnv}[vec_env_class] | |
elif env_type == "gymvec": | |
VecEnvClass = {"sync": SyncVectorEnv, "async": AsyncVectorEnv}[vec_env_class] | |
else: | |
raise ValueError(f"env_type {env_type} unsupported") | |
envs = VecEnvClass([make(i) for i in range(n_envs)]) | |
if env_type == "gymvec" and vec_env_class == "sync": | |
envs = SyncVectorEnvRenderCompat(envs) | |
if env_type == "sb3vec": | |
envs = IsVectorEnv(envs) | |
if mask_actions: | |
envs = SingleActionMaskWrapper(envs) | |
if training: | |
assert tb_writer | |
envs = EpisodeStatsWriter( | |
envs, tb_writer, training=training, rolling_length=rolling_length | |
) | |
if normalize: | |
if normalize_type is None: | |
normalize_type = "sb3" if env_type == "sb3vec" else "gymlike" | |
normalize_kwargs = normalize_kwargs or {} | |
if normalize_type == "sb3": | |
if normalize_load_path: | |
envs = VecNormalize.load( | |
os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME), | |
envs, # type: ignore | |
) | |
else: | |
envs = VecNormalize( | |
envs, # type: ignore | |
training=training, | |
**normalize_kwargs, | |
) | |
if not training: | |
envs.norm_reward = False | |
elif normalize_type == "gymlike": | |
if normalize_kwargs.get("norm_obs", True): | |
envs = NormalizeObservation( | |
envs, training=training, clip=normalize_kwargs.get("clip_obs", 10.0) | |
) | |
if training and normalize_kwargs.get("norm_reward", True): | |
envs = NormalizeReward( | |
envs, | |
training=training, | |
clip=normalize_kwargs.get("clip_reward", 10.0), | |
) | |
else: | |
raise ValueError( | |
f"normalize_type {normalize_type} not supported (sb3 or gymlike)" | |
) | |
return envs | |