vpg-CarRacing-v0 / README.md
sgoodfriend's picture
VPG playing CarRacing-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
228d125
|
raw
history blame
5.52 kB
metadata
library_name: rl-algo-impls
tags:
  - CarRacing-v0
  - vpg
  - deep-reinforcement-learning
  - reinforcement-learning
model-index:
  - name: vpg
    results:
      - metrics:
          - type: mean_reward
            value: 753.27 +/- 79.0
            name: mean_reward
        task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: CarRacing-v0
          type: CarRacing-v0

VPG Agent playing CarRacing-v0

This is a trained model of a VPG agent playing CarRacing-v0 using the /sgoodfriend/rl-algo-impls repo.

All models trained at this commit can be found at https://api.wandb.ai/links/sgoodfriend/09frjfcs.

Training Results

This model was trained from 3 trainings of VPG agents using different initial seeds. These agents were trained by checking out 2067e21. The best and last models were kept from each training. This submission has loaded the best models from each training, reevaluates them, and selects the best model from these latest evaluations (mean - std).

algo env seed reward_mean reward_std eval_episodes best wandb_url
vpg CarRacing-v0 1 330.529 150.507 12 wandb
vpg CarRacing-v0 2 399.733 50.581 12 wandb
vpg CarRacing-v0 3 753.27 79.0029 12 * wandb

Prerequisites: Weights & Biases (WandB)

Training and benchmarking assumes you have a Weights & Biases project to upload runs to. By default training goes to a rl-algo-impls project while benchmarks go to rl-algo-impls-benchmarks. During training and benchmarking runs, videos of the best models and the model weights are uploaded to WandB.

Before doing anything below, you'll need to create a wandb account and run wandb login.

Usage

/sgoodfriend/rl-algo-impls: https://github.com/sgoodfriend/rl-algo-impls

Note: While the model state dictionary and hyperaparameters are saved, the latest implementation could be sufficiently different to not be able to reproduce similar results. You might need to checkout the commit the agent was trained on: 2067e21.

# Downloads the model, sets hyperparameters, and runs agent for 3 episodes
python enjoy.py --wandb-run-path=sgoodfriend/rl-algo-impls-benchmarks/cp98ieje

Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_enjoy.ipynb notebook.

Training

If you want the highest chance to reproduce these results, you'll want to checkout the commit the agent was trained on: 2067e21. While training is deterministic, different hardware will give different results.

python train.py --algo vpg --env CarRacing-v0 --seed 3

Setup hasn't been completely worked out yet, so you might be best served by using Google Colab starting from the colab_train.ipynb notebook.

Benchmarking (with Lambda Labs instance)

This and other models from https://api.wandb.ai/links/sgoodfriend/09frjfcs were generated by running a script on a Lambda Labs instance. In a Lambda Labs instance terminal:

git clone git@github.com:sgoodfriend/rl-algo-impls.git
cd rl-algo-impls
bash ./lambda_labs/setup.sh
wandb login
bash ./lambda_labs/benchmark.sh [-a {"ppo a2c dqn vpg"}] [-e ENVS] [-j {6}] [-p {rl-algo-impls-benchmarks}] [-s {"1 2 3"}]

Alternative: Google Colab Pro+

As an alternative, colab_benchmark.ipynb, can be used. However, this requires a Google Colab Pro+ subscription and running across 4 separate instances because otherwise running all jobs will exceed the 24-hour limit.

Hyperparameters

This isn't exactly the format of hyperparams in hyperparams/vpg.yml, but instead the Wandb Run Config. However, it's very close and has some additional data:

algo: vpg
algo_hyperparams:
  gae_lambda: 0.95
  gamma: 0.99
  max_grad_norm: 0.5
  n_steps: 1000
  pi_lr: 5.0e-05
  sde_sample_freq: 4
  train_v_iters: 40
  val_lr: 0.0001
device: auto
env: CarRacing-v0
env_hyperparams:
  frame_stack: 4
  n_envs: 4
  vec_env_class: sync
env_id: null
eval_params: {}
n_timesteps: 4000000
policy_hyperparams:
  activation_fn: relu
  cnn_feature_dim: 256
  hidden_sizes:
  - 256
  init_layers_orthogonal: false
  log_std_init: -2
  use_sde: true
seed: 3
use_deterministic_algorithms: true
wandb_entity: null
wandb_group: null
wandb_project_name: rl-algo-impls-benchmarks
wandb_tags:
- benchmark_2067e21
- host_155-248-199-228