sfulay's picture
Model save
a773699 verified
|
raw
history blame
3.61 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - trl
  - dpo
  - alignment-handbook
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full-prometheus_consistent-reward-scale-1
    results: []

zephyr-7b-dpo-full-prometheus_consistent-reward-scale-1

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5209
  • Rewards/chosen: -1.1123
  • Rewards/rejected: -2.3595
  • Rewards/accuracies: 0.7672
  • Rewards/margins: 1.2472
  • Logps/rejected: -455.0307
  • Logps/chosen: -386.8380
  • Logits/rejected: 3.7050
  • Logits/chosen: 2.1175

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 55
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6663 0.1143 50 0.6532 -0.0060 -0.1654 0.6897 0.1594 -235.6116 -276.2017 -2.4378 -2.5412
0.6051 0.2286 100 0.6128 -0.8115 -1.2713 0.7112 0.4599 -346.2107 -356.7497 -2.3746 -2.4933
0.5375 0.3429 150 0.5487 -0.8314 -1.9411 0.7672 1.1097 -413.1859 -358.7466 1.3727 0.2031
0.5435 0.4571 200 0.5359 -0.9895 -2.0771 0.7543 1.0876 -426.7858 -374.5490 2.7076 1.3441
0.5433 0.5714 250 0.5290 -0.9003 -2.0663 0.7629 1.1660 -425.7063 -365.6371 2.4121 0.8588
0.5194 0.6857 300 0.5213 -0.9607 -2.2057 0.7716 1.2450 -439.6500 -371.6745 3.3117 1.7085
0.5325 0.8 350 0.5216 -1.1386 -2.3763 0.7629 1.2377 -456.7085 -389.4649 3.6708 2.0842
0.5483 0.9143 400 0.5209 -1.1123 -2.3595 0.7672 1.2472 -455.0307 -386.8380 3.7050 2.1175

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1