sergiocannata
commited on
Commit
·
7145312
1
Parent(s):
04b91d3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: VANBase-finetuned-brs-finetuned-brs
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.5882352941176471
|
26 |
+
- name: F1
|
27 |
+
type: f1
|
28 |
+
value: 0.6956521739130435
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# VANBase-finetuned-brs-finetuned-brs
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) on the imagefolder dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.7056
|
39 |
+
- Accuracy: 0.5882
|
40 |
+
- F1: 0.6957
|
41 |
+
- Precision (ppv): 0.6154
|
42 |
+
- Recall (sensitivity): 0.8
|
43 |
+
- Specificity: 0.2857
|
44 |
+
- Npv: 0.5
|
45 |
+
- Auc: 0.5429
|
46 |
+
|
47 |
+
## Model description
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Intended uses & limitations
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training and evaluation data
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training procedure
|
60 |
+
|
61 |
+
### Training hyperparameters
|
62 |
+
|
63 |
+
The following hyperparameters were used during training:
|
64 |
+
- learning_rate: 1e-05
|
65 |
+
- train_batch_size: 1
|
66 |
+
- eval_batch_size: 1
|
67 |
+
- seed: 42
|
68 |
+
- gradient_accumulation_steps: 4
|
69 |
+
- total_train_batch_size: 4
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- lr_scheduler_warmup_ratio: 0.1
|
73 |
+
- num_epochs: 100
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------------:|:--------------------:|:-----------:|:------:|:------:|
|
79 |
+
| 0.6589 | 6.25 | 100 | 0.6655 | 0.5882 | 0.6316 | 0.6667 | 0.6 | 0.5714 | 0.5 | 0.5857 |
|
80 |
+
| 0.6262 | 12.49 | 200 | 0.6917 | 0.5294 | 0.6364 | 0.5833 | 0.7 | 0.2857 | 0.4 | 0.4929 |
|
81 |
+
| 0.4706 | 18.74 | 300 | 0.6776 | 0.5882 | 0.6957 | 0.6154 | 0.8 | 0.2857 | 0.5 | 0.5429 |
|
82 |
+
| 0.5202 | 24.98 | 400 | 0.7018 | 0.5294 | 0.6 | 0.6 | 0.6 | 0.4286 | 0.4286 | 0.5143 |
|
83 |
+
| 0.4628 | 31.25 | 500 | 0.6903 | 0.6471 | 0.75 | 0.6429 | 0.9 | 0.2857 | 0.6667 | 0.5929 |
|
84 |
+
| 0.3525 | 37.49 | 600 | 0.7241 | 0.5294 | 0.6667 | 0.5714 | 0.8 | 0.1429 | 0.3333 | 0.4714 |
|
85 |
+
| 0.2877 | 43.74 | 700 | 0.8262 | 0.5882 | 0.7407 | 0.5882 | 1.0 | 0.0 | nan | 0.5 |
|
86 |
+
| 0.2921 | 49.98 | 800 | 0.8058 | 0.4706 | 0.64 | 0.5333 | 0.8 | 0.0 | 0.0 | 0.4 |
|
87 |
+
| 0.3834 | 56.25 | 900 | 0.7864 | 0.5882 | 0.7407 | 0.5882 | 1.0 | 0.0 | nan | 0.5 |
|
88 |
+
| 0.2267 | 62.49 | 1000 | 0.5520 | 0.7647 | 0.8182 | 0.75 | 0.9 | 0.5714 | 0.8 | 0.7357 |
|
89 |
+
| 0.3798 | 68.74 | 1100 | 0.8722 | 0.4706 | 0.64 | 0.5333 | 0.8 | 0.0 | 0.0 | 0.4 |
|
90 |
+
| 0.2633 | 74.98 | 1200 | 0.7260 | 0.6471 | 0.7273 | 0.6667 | 0.8 | 0.4286 | 0.6 | 0.6143 |
|
91 |
+
| 0.3439 | 81.25 | 1300 | 1.0187 | 0.4118 | 0.5455 | 0.5 | 0.6 | 0.1429 | 0.2 | 0.3714 |
|
92 |
+
| 0.2532 | 87.49 | 1400 | 0.8812 | 0.5882 | 0.7407 | 0.5882 | 1.0 | 0.0 | nan | 0.5 |
|
93 |
+
| 0.0841 | 93.74 | 1500 | 0.8717 | 0.5294 | 0.6923 | 0.5625 | 0.9 | 0.0 | 0.0 | 0.45 |
|
94 |
+
| 0.3409 | 99.98 | 1600 | 0.7056 | 0.5882 | 0.6957 | 0.6154 | 0.8 | 0.2857 | 0.5 | 0.5429 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.23.1
|
100 |
+
- Pytorch 1.12.1+cu113
|
101 |
+
- Datasets 2.6.1
|
102 |
+
- Tokenizers 0.13.1
|