serdarcaglar's picture
Add SetFit model
4d19101 verified
|
raw
history blame
7.62 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      If you have 3 red apples and 2 green apples, how many apples do you have
      in total?
  - text: Can you name three different colors?
  - text: >-
      If you have 15 cookies and you share them equally among 3 friends, how
      many cookies does each friend get?
  - text: Which state is known as the Sunshine State?
  - text: >-
      John has 2 more toy cars than Sam. If Sam has 6 cars, how many does John
      have?
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-MiniLM-L6-v2
model-index:
  - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 1
            name: Accuracy

SetFit with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
non_math
  • 'What is the largest ocean on Earth?'
  • 'What is the name of the galaxy that contains our solar system?'
  • 'What is the name of the ocean on the east coast of the United States?'
math
  • 'Which is more: 7 or 9?'
  • 'There are 20 chocolates, and you want to share them equally among 4 friends. How many chocolates will each friend get?'
  • "If the teacher says 'Alice has 3 more apples than Bob', how can you represent this using numbers and symbols?"

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question")
# Run inference
preds = model("Can you name three different colors?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 12.4979 33
Label Training Sample Count
math 142
non_math 99

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0017 1 0.336 -
0.0829 50 0.1156 -
0.1658 100 0.0062 -
0.2488 150 0.0026 -
0.3317 200 0.0025 -
0.4146 250 0.0022 -
0.4975 300 0.0024 -
0.5804 350 0.0009 -
0.6633 400 0.0009 -
0.7463 450 0.0007 -
0.8292 500 0.0004 -
0.9121 550 0.0002 -
0.9950 600 0.0007 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.6.1
  • Transformers: 4.38.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}