|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- udpos28 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: parsbert-finetuned-pos |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: udpos28 |
|
type: udpos28 |
|
args: fa |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9447937270415372 |
|
- name: Recall |
|
type: recall |
|
value: 0.9486470191864382 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9467164522465448 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9598951738759165 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# parsbert-finetuned-pos |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the udpos28 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1385 |
|
- Precision: 0.9448 |
|
- Recall: 0.9486 |
|
- F1: 0.9467 |
|
- Accuracy: 0.9599 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.122 | 1.0 | 3103 | 0.1215 | 0.9363 | 0.9424 | 0.9394 | 0.9561 | |
|
| 0.0735 | 2.0 | 6206 | 0.1297 | 0.9413 | 0.9474 | 0.9443 | 0.9582 | |
|
| 0.0373 | 3.0 | 9309 | 0.1385 | 0.9448 | 0.9486 | 0.9467 | 0.9599 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.10.0 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|