Commit
·
7cabe6b
1
Parent(s):
0e899ab
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: reddit_gen_final
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# reddit_gen_final
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.5050
|
21 |
+
- Rouge: {'rouge1': 0.5318334167452433, 'rouge2': 0.3266503490464716, 'rougeL': 0.4940196552424935, 'rougeLsum': 0.49965823775029017}
|
22 |
+
- Perplexity: 810.2161
|
23 |
+
- Bleu: {'bleu': 0.3233116246700081, 'precisions': [0.5456588886510291, 0.3399931653275477, 0.273607307447275, 0.2384403661808989], 'brevity_penalty': 0.9747575251310703, 'length_ratio': 0.975070821529745, 'translation_length': 130796, 'reference_length': 134140}
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.001
|
43 |
+
- train_batch_size: 1024
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 32
|
47 |
+
- total_train_batch_size: 32768
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- training_steps: 1077
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge | Perplexity | Bleu |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------------------:|:----------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
58 |
+
| 3.9872 | 18.02 | 320 | 3.1407 | {'rouge1': 0.4236605668840905, 'rouge2': 0.17676647154634773, 'rougeL': 0.37369585565755137, 'rougeLsum': 0.38069226779493875} | 1007.2803 | {'bleu': 0.1795660368641941, 'precisions': [0.4476203532341719, 0.1996849620846328, 0.12947506323794772, 0.097952801903731], 'brevity_penalty': 0.9786100068791068, 'length_ratio': 0.9788355449530342, 'translation_length': 131301, 'reference_length': 134140} |
|
59 |
+
| 3.0112 | 37.02 | 640 | 2.6693 | {'rouge1': 0.5006690963461402, 'rouge2': 0.2845737029774397, 'rougeL': 0.4598926127632702, 'rougeLsum': 0.46623659707701914} | 891.6387 | {'bleu': 0.28259351848586683, 'precisions': [0.5153005174673647, 0.2977358252901072, 0.22869830241856198, 0.19400129812455164], 'brevity_penalty': 0.9838352619991267, 'length_ratio': 0.9839645146861488, 'translation_length': 131989, 'reference_length': 134140} |
|
60 |
+
| 2.5776 | 56.02 | 960 | 2.5050 | {'rouge1': 0.5318334167452433, 'rouge2': 0.3266503490464716, 'rougeL': 0.4940196552424935, 'rougeLsum': 0.49965823775029017} | 810.2161 | {'bleu': 0.3233116246700081, 'precisions': [0.5456588886510291, 0.3399931653275477, 0.273607307447275, 0.2384403661808989], 'brevity_penalty': 0.9747575251310703, 'length_ratio': 0.975070821529745, 'translation_length': 130796, 'reference_length': 134140} |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.28.1
|
66 |
+
- Pytorch 1.13.1+cu117
|
67 |
+
- Datasets 2.10.1
|
68 |
+
- Tokenizers 0.13.2
|