Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
|
11 |
# sentence-transformers/msmarco-distilbert-base-tas-b
|
12 |
|
13 |
-
This is a port of the [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and
|
14 |
|
15 |
|
16 |
|
@@ -25,12 +25,30 @@ pip install -U sentence-transformers
|
|
25 |
Then you can use the model like this:
|
26 |
|
27 |
```python
|
28 |
-
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
|
|
|
|
|
|
|
|
31 |
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-tas-b')
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
```
|
35 |
|
36 |
|
@@ -42,30 +60,49 @@ Without [sentence-transformers](https://www.SBERT.net), you can use the model li
|
|
42 |
from transformers import AutoTokenizer, AutoModel
|
43 |
import torch
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
|
49 |
|
50 |
# Sentences we want sentence embeddings for
|
51 |
-
|
|
|
52 |
|
53 |
# Load model from HuggingFace Hub
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
55 |
-
model = AutoModel.from_pretrained(
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
model_output = model(**encoded_input)
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
|
|
69 |
```
|
70 |
|
71 |
|
@@ -88,4 +125,4 @@ SentenceTransformer(
|
|
88 |
|
89 |
## Citing & Authors
|
90 |
|
91 |
-
Have a look at: [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
|
|
|
10 |
|
11 |
# sentence-transformers/msmarco-distilbert-base-tas-b
|
12 |
|
13 |
+
This is a port of the [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and is optimized for the task of semantic search.
|
14 |
|
15 |
|
16 |
|
|
|
25 |
Then you can use the model like this:
|
26 |
|
27 |
```python
|
28 |
+
from sentence_transformers import SentenceTransformer, util
|
|
|
29 |
|
30 |
+
query = "How many people live in London?"
|
31 |
+
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
|
32 |
+
|
33 |
+
#Load the model
|
34 |
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-tas-b')
|
35 |
+
|
36 |
+
#Encode query and documents
|
37 |
+
query_emb = model.encode(query)
|
38 |
+
doc_emb = model.encode(docs)
|
39 |
+
|
40 |
+
#Compute dot score between query and all document embeddings
|
41 |
+
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
|
42 |
+
|
43 |
+
#Combine docs & scores
|
44 |
+
doc_score_pairs = list(zip(docs, scores))
|
45 |
+
|
46 |
+
#Sort by decreasing score
|
47 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
48 |
+
|
49 |
+
#Output passages & scores
|
50 |
+
for doc, score in doc_score_pairs:
|
51 |
+
print(score, doc)
|
52 |
```
|
53 |
|
54 |
|
|
|
60 |
from transformers import AutoTokenizer, AutoModel
|
61 |
import torch
|
62 |
|
63 |
+
#CLS Pooling - Take output from first token
|
64 |
+
def cls_pooling(model_output):
|
65 |
+
return model_output.last_hidden_state[:,0]
|
66 |
+
|
67 |
+
#Encode text
|
68 |
+
def encode(texts):
|
69 |
+
# Tokenize sentences
|
70 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
|
71 |
+
|
72 |
+
# Compute token embeddings
|
73 |
+
with torch.no_grad():
|
74 |
+
model_output = model(**encoded_input, return_dict=True)
|
75 |
|
76 |
+
# Perform pooling
|
77 |
+
embeddings = cls_pooling(model_output)
|
78 |
+
|
79 |
+
return embeddings
|
80 |
|
81 |
|
82 |
# Sentences we want sentence embeddings for
|
83 |
+
query = "How many people live in London?"
|
84 |
+
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
|
85 |
|
86 |
# Load model from HuggingFace Hub
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b")
|
88 |
+
model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b")
|
89 |
+
|
90 |
+
#Encode query and docs
|
91 |
+
query_emb = encode(query)
|
92 |
+
doc_emb = encode(docs)
|
93 |
|
94 |
+
#Compute dot score between query and all document embeddings
|
95 |
+
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
|
96 |
|
97 |
+
#Combine docs & scores
|
98 |
+
doc_score_pairs = list(zip(docs, scores))
|
|
|
99 |
|
100 |
+
#Sort by decreasing score
|
101 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
102 |
|
103 |
+
#Output passages & scores
|
104 |
+
for doc, score in doc_score_pairs:
|
105 |
+
print(score, doc)
|
106 |
```
|
107 |
|
108 |
|
|
|
125 |
|
126 |
## Citing & Authors
|
127 |
|
128 |
+
Have a look at: [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco)
|