all-MiniLM-L12-v2 / README.md
Muennighoff's picture
Add MTEB
60f0b43
|
raw
history blame
131 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
language: en
license: apache-2.0
datasets:
  - s2orc
  - flax-sentence-embeddings/stackexchange_xml
  - MS Marco
  - gooaq
  - yahoo_answers_topics
  - code_search_net
  - search_qa
  - eli5
  - snli
  - multi_nli
  - wikihow
  - natural_questions
  - trivia_qa
  - embedding-data/sentence-compression
  - embedding-data/flickr30k-captions
  - embedding-data/altlex
  - embedding-data/simple-wiki
  - embedding-data/QQP
  - embedding-data/SPECTER
  - embedding-data/PAQ_pairs
  - embedding-data/WikiAnswers
model-index:
  - name: all-MiniLM-L12-v2
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 65.28358208955224
          - type: ap
            value: 28.02247873560022
          - type: f1
            value: 59.09977445939425
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 57.09850107066381
          - type: ap
            value: 73.38224986285773
          - type: f1
            value: 55.183322516223434
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 67.24137931034483
          - type: ap
            value: 17.93337056203553
          - type: f1
            value: 55.200711090858846
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
        metrics:
          - type: accuracy
            value: 59.91434689507494
          - type: ap
            value: 13.610920446878454
          - type: f1
            value: 48.70464699796398
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
        metrics:
          - type: accuracy
            value: 62.984899999999996
          - type: ap
            value: 58.19701547898307
          - type: f1
            value: 62.704020410756144
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 30.792
          - type: f1
            value: 30.254565315575437
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 25.907999999999998
          - type: f1
            value: 25.538149526380543
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 27.634000000000004
          - type: f1
            value: 27.287076320171728
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 27.540000000000003
          - type: f1
            value: 27.21486019130574
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 23.566000000000003
          - type: f1
            value: 23.3492650771905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: c379a6705fec24a2493fa68e011692605f44e119
        metrics:
          - type: accuracy
            value: 22.99
          - type: f1
            value: 22.47175043426865
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
        metrics:
          - type: map_at_1
            value: 23.257
          - type: map_at_10
            value: 38.083
          - type: map_at_100
            value: 39.263999999999996
          - type: map_at_1000
            value: 39.273
          - type: map_at_3
            value: 32.574999999999996
          - type: map_at_5
            value: 35.669000000000004
          - type: mrr_at_1
            value: 23.613
          - type: mrr_at_10
            value: 38.243
          - type: mrr_at_100
            value: 39.410000000000004
          - type: mrr_at_1000
            value: 39.419
          - type: mrr_at_3
            value: 32.883
          - type: mrr_at_5
            value: 35.766999999999996
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 47.128
          - type: ndcg_at_100
            value: 52.093
          - type: ndcg_at_1000
            value: 52.315999999999995
          - type: ndcg_at_3
            value: 35.794
          - type: ndcg_at_5
            value: 41.364000000000004
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 7.632
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.055
          - type: precision_at_5
            value: 11.735
          - type: recall_at_1
            value: 23.257
          - type: recall_at_10
            value: 76.31599999999999
          - type: recall_at_100
            value: 97.866
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 45.164
          - type: recall_at_5
            value: 58.677
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
        metrics:
          - type: v_measure
            value: 46.06982724111873
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
        metrics:
          - type: v_measure
            value: 37.501829188148264
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
        metrics:
          - type: map
            value: 64.06160552465775
          - type: mrr
            value: 77.40029899309677
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: 9ee918f184421b6bd48b78f6c714d86546106103
        metrics:
          - type: cos_sim_pearson
            value: 86.73300462416691
          - type: cos_sim_spearman
            value: 83.56756679430214
          - type: euclidean_pearson
            value: 84.35153960397948
          - type: euclidean_spearman
            value: 83.56756679430214
          - type: manhattan_pearson
            value: 84.10087673223914
          - type: manhattan_spearman
            value: 83.58383222516198
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
        metrics:
          - type: accuracy
            value: 80.40259740259741
          - type: f1
            value: 79.7932665380276
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
        metrics:
          - type: v_measure
            value: 36.985834019439366
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
        metrics:
          - type: v_measure
            value: 33.207831360185644
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 34.975
          - type: map_at_10
            value: 47.227999999999994
          - type: map_at_100
            value: 48.91
          - type: map_at_1000
            value: 49.016
          - type: map_at_3
            value: 43.334
          - type: map_at_5
            value: 45.353
          - type: mrr_at_1
            value: 43.348
          - type: mrr_at_10
            value: 53.744
          - type: mrr_at_100
            value: 54.432
          - type: mrr_at_1000
            value: 54.458
          - type: mrr_at_3
            value: 51.359
          - type: mrr_at_5
            value: 52.825
          - type: ndcg_at_1
            value: 43.348
          - type: ndcg_at_10
            value: 54.118
          - type: ndcg_at_100
            value: 59.496
          - type: ndcg_at_1000
            value: 60.846999999999994
          - type: ndcg_at_3
            value: 49.001
          - type: ndcg_at_5
            value: 51.245
          - type: precision_at_1
            value: 43.348
          - type: precision_at_10
            value: 10.658
          - type: precision_at_100
            value: 1.701
          - type: precision_at_1000
            value: 0.214
          - type: precision_at_3
            value: 23.701
          - type: precision_at_5
            value: 17.082
          - type: recall_at_1
            value: 34.975
          - type: recall_at_10
            value: 66.291
          - type: recall_at_100
            value: 88.727
          - type: recall_at_1000
            value: 97.26700000000001
          - type: recall_at_3
            value: 51.505
          - type: recall_at_5
            value: 57.833
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 31.509999999999998
          - type: map_at_10
            value: 43.401
          - type: map_at_100
            value: 44.762
          - type: map_at_1000
            value: 44.906
          - type: map_at_3
            value: 39.83
          - type: map_at_5
            value: 41.784
          - type: mrr_at_1
            value: 39.936
          - type: mrr_at_10
            value: 49.534
          - type: mrr_at_100
            value: 50.126000000000005
          - type: mrr_at_1000
            value: 50.163999999999994
          - type: mrr_at_3
            value: 46.996
          - type: mrr_at_5
            value: 48.508
          - type: ndcg_at_1
            value: 39.936
          - type: ndcg_at_10
            value: 49.845
          - type: ndcg_at_100
            value: 54.25600000000001
          - type: ndcg_at_1000
            value: 56.227000000000004
          - type: ndcg_at_3
            value: 44.982
          - type: ndcg_at_5
            value: 47.187
          - type: precision_at_1
            value: 39.936
          - type: precision_at_10
            value: 9.771
          - type: precision_at_100
            value: 1.575
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 22.314
          - type: precision_at_5
            value: 15.975
          - type: recall_at_1
            value: 31.509999999999998
          - type: recall_at_10
            value: 61.468
          - type: recall_at_100
            value: 80.023
          - type: recall_at_1000
            value: 92.267
          - type: recall_at_3
            value: 46.698
          - type: recall_at_5
            value: 53.03600000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 38.577
          - type: map_at_10
            value: 51.041000000000004
          - type: map_at_100
            value: 52.141000000000005
          - type: map_at_1000
            value: 52.190000000000005
          - type: map_at_3
            value: 47.904
          - type: map_at_5
            value: 49.645
          - type: mrr_at_1
            value: 44.138
          - type: mrr_at_10
            value: 54.36
          - type: mrr_at_100
            value: 55.05799999999999
          - type: mrr_at_1000
            value: 55.084
          - type: mrr_at_3
            value: 52.017
          - type: mrr_at_5
            value: 53.321
          - type: ndcg_at_1
            value: 44.138
          - type: ndcg_at_10
            value: 56.855999999999995
          - type: ndcg_at_100
            value: 61.133
          - type: ndcg_at_1000
            value: 62.17399999999999
          - type: ndcg_at_3
            value: 51.624
          - type: ndcg_at_5
            value: 54.108999999999995
          - type: precision_at_1
            value: 44.138
          - type: precision_at_10
            value: 9.16
          - type: precision_at_100
            value: 1.2309999999999999
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 23.156
          - type: precision_at_5
            value: 15.762
          - type: recall_at_1
            value: 38.577
          - type: recall_at_10
            value: 70.638
          - type: recall_at_100
            value: 89.01
          - type: recall_at_1000
            value: 96.53699999999999
          - type: recall_at_3
            value: 56.635000000000005
          - type: recall_at_5
            value: 62.731
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 27.038
          - type: map_at_10
            value: 36.108000000000004
          - type: map_at_100
            value: 37.316
          - type: map_at_1000
            value: 37.396
          - type: map_at_3
            value: 33.206
          - type: map_at_5
            value: 34.674
          - type: mrr_at_1
            value: 29.04
          - type: mrr_at_10
            value: 37.979
          - type: mrr_at_100
            value: 39.056000000000004
          - type: mrr_at_1000
            value: 39.11
          - type: mrr_at_3
            value: 35.348
          - type: mrr_at_5
            value: 36.675999999999995
          - type: ndcg_at_1
            value: 29.04
          - type: ndcg_at_10
            value: 41.408
          - type: ndcg_at_100
            value: 46.918
          - type: ndcg_at_1000
            value: 48.827
          - type: ndcg_at_3
            value: 35.699999999999996
          - type: ndcg_at_5
            value: 38.112
          - type: precision_at_1
            value: 29.04
          - type: precision_at_10
            value: 6.463000000000001
          - type: precision_at_100
            value: 0.9570000000000001
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 15.104000000000001
          - type: precision_at_5
            value: 10.508000000000001
          - type: recall_at_1
            value: 27.038
          - type: recall_at_10
            value: 55.989
          - type: recall_at_100
            value: 80.418
          - type: recall_at_1000
            value: 94.506
          - type: recall_at_3
            value: 40.388000000000005
          - type: recall_at_5
            value: 46.085
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 17.264
          - type: map_at_10
            value: 26.157000000000004
          - type: map_at_100
            value: 27.503
          - type: map_at_1000
            value: 27.617000000000004
          - type: map_at_3
            value: 23.247999999999998
          - type: map_at_5
            value: 24.81
          - type: mrr_at_1
            value: 21.144
          - type: mrr_at_10
            value: 30.516
          - type: mrr_at_100
            value: 31.607000000000003
          - type: mrr_at_1000
            value: 31.673000000000002
          - type: mrr_at_3
            value: 27.716
          - type: mrr_at_5
            value: 29.357
          - type: ndcg_at_1
            value: 21.144
          - type: ndcg_at_10
            value: 31.86
          - type: ndcg_at_100
            value: 38.12
          - type: ndcg_at_1000
            value: 40.699000000000005
          - type: ndcg_at_3
            value: 26.411
          - type: ndcg_at_5
            value: 28.896
          - type: precision_at_1
            value: 21.144
          - type: precision_at_10
            value: 5.995
          - type: precision_at_100
            value: 1.058
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.894
          - type: precision_at_5
            value: 9.428
          - type: recall_at_1
            value: 17.264
          - type: recall_at_10
            value: 45.074
          - type: recall_at_100
            value: 71.817
          - type: recall_at_1000
            value: 89.846
          - type: recall_at_3
            value: 30.031000000000002
          - type: recall_at_5
            value: 36.233
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 28.668
          - type: map_at_10
            value: 40.382
          - type: map_at_100
            value: 41.836
          - type: map_at_1000
            value: 41.954
          - type: map_at_3
            value: 37.136
          - type: map_at_5
            value: 38.755
          - type: mrr_at_1
            value: 35.13
          - type: mrr_at_10
            value: 45.928999999999995
          - type: mrr_at_100
            value: 46.814
          - type: mrr_at_1000
            value: 46.854
          - type: mrr_at_3
            value: 43.423
          - type: mrr_at_5
            value: 44.79
          - type: ndcg_at_1
            value: 35.13
          - type: ndcg_at_10
            value: 46.81
          - type: ndcg_at_100
            value: 52.552
          - type: ndcg_at_1000
            value: 54.493
          - type: ndcg_at_3
            value: 41.732
          - type: ndcg_at_5
            value: 43.847
          - type: precision_at_1
            value: 35.13
          - type: precision_at_10
            value: 8.738999999999999
          - type: precision_at_100
            value: 1.373
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 20.372
          - type: precision_at_5
            value: 14.302000000000001
          - type: recall_at_1
            value: 28.668
          - type: recall_at_10
            value: 60.038000000000004
          - type: recall_at_100
            value: 83.736
          - type: recall_at_1000
            value: 96.184
          - type: recall_at_3
            value: 45.647999999999996
          - type: recall_at_5
            value: 51.212
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 25.287
          - type: map_at_10
            value: 35.351
          - type: map_at_100
            value: 36.867
          - type: map_at_1000
            value: 36.973
          - type: map_at_3
            value: 32.176
          - type: map_at_5
            value: 33.894999999999996
          - type: mrr_at_1
            value: 31.735000000000003
          - type: mrr_at_10
            value: 40.832
          - type: mrr_at_100
            value: 41.812
          - type: mrr_at_1000
            value: 41.864000000000004
          - type: mrr_at_3
            value: 38.489000000000004
          - type: mrr_at_5
            value: 39.654
          - type: ndcg_at_1
            value: 31.735000000000003
          - type: ndcg_at_10
            value: 41.327999999999996
          - type: ndcg_at_100
            value: 47.565000000000005
          - type: ndcg_at_1000
            value: 49.708000000000006
          - type: ndcg_at_3
            value: 36.391
          - type: ndcg_at_5
            value: 38.489000000000004
          - type: precision_at_1
            value: 31.735000000000003
          - type: precision_at_10
            value: 7.7170000000000005
          - type: precision_at_100
            value: 1.2670000000000001
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 17.808
          - type: precision_at_5
            value: 12.534
          - type: recall_at_1
            value: 25.287
          - type: recall_at_10
            value: 53.735
          - type: recall_at_100
            value: 80.149
          - type: recall_at_1000
            value: 94.756
          - type: recall_at_3
            value: 39.475
          - type: recall_at_5
            value: 45.532000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 26.613
          - type: map_at_10
            value: 36.747416666666666
          - type: map_at_100
            value: 38.091416666666674
          - type: map_at_1000
            value: 38.2075
          - type: map_at_3
            value: 33.630833333333335
          - type: map_at_5
            value: 35.28225
          - type: mrr_at_1
            value: 31.654
          - type: mrr_at_10
            value: 40.94166666666666
          - type: mrr_at_100
            value: 41.85883333333334
          - type: mrr_at_1000
            value: 41.910666666666664
          - type: mrr_at_3
            value: 38.44458333333334
          - type: mrr_at_5
            value: 39.84525000000001
          - type: ndcg_at_1
            value: 31.654
          - type: ndcg_at_10
            value: 42.533
          - type: ndcg_at_100
            value: 48.09741666666667
          - type: ndcg_at_1000
            value: 50.170166666666674
          - type: ndcg_at_3
            value: 37.37858333333333
          - type: ndcg_at_5
            value: 39.666666666666664
          - type: precision_at_1
            value: 31.654
          - type: precision_at_10
            value: 7.649500000000001
          - type: precision_at_100
            value: 1.2425
          - type: precision_at_1000
            value: 0.16175
          - type: precision_at_3
            value: 17.49625
          - type: precision_at_5
            value: 12.410333333333332
          - type: recall_at_1
            value: 26.613
          - type: recall_at_10
            value: 55.33375
          - type: recall_at_100
            value: 79.52791666666667
          - type: recall_at_1000
            value: 93.73391666666667
          - type: recall_at_3
            value: 40.861333333333334
          - type: recall_at_5
            value: 46.84675
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 26.079
          - type: map_at_10
            value: 33.481
          - type: map_at_100
            value: 34.494
          - type: map_at_1000
            value: 34.589999999999996
          - type: map_at_3
            value: 31.165
          - type: map_at_5
            value: 32.482
          - type: mrr_at_1
            value: 29.293999999999997
          - type: mrr_at_10
            value: 36.303000000000004
          - type: mrr_at_100
            value: 37.183
          - type: mrr_at_1000
            value: 37.254
          - type: mrr_at_3
            value: 34.33
          - type: mrr_at_5
            value: 35.519
          - type: ndcg_at_1
            value: 29.293999999999997
          - type: ndcg_at_10
            value: 37.817
          - type: ndcg_at_100
            value: 42.91
          - type: ndcg_at_1000
            value: 45.342
          - type: ndcg_at_3
            value: 33.695
          - type: ndcg_at_5
            value: 35.747
          - type: precision_at_1
            value: 29.293999999999997
          - type: precision_at_10
            value: 5.951
          - type: precision_at_100
            value: 0.9400000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 14.519000000000002
          - type: precision_at_5
            value: 10.123
          - type: recall_at_1
            value: 26.079
          - type: recall_at_10
            value: 48.27
          - type: recall_at_100
            value: 71.64
          - type: recall_at_1000
            value: 89.775
          - type: recall_at_3
            value: 36.858000000000004
          - type: recall_at_5
            value: 42.013
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 18.17
          - type: map_at_10
            value: 26.483
          - type: map_at_100
            value: 27.732
          - type: map_at_1000
            value: 27.864
          - type: map_at_3
            value: 23.76
          - type: map_at_5
            value: 25.290000000000003
          - type: mrr_at_1
            value: 22.436
          - type: mrr_at_10
            value: 30.448999999999998
          - type: mrr_at_100
            value: 31.476
          - type: mrr_at_1000
            value: 31.548
          - type: mrr_at_3
            value: 28.051
          - type: mrr_at_5
            value: 29.421999999999997
          - type: ndcg_at_1
            value: 22.436
          - type: ndcg_at_10
            value: 31.662000000000003
          - type: ndcg_at_100
            value: 37.611
          - type: ndcg_at_1000
            value: 40.439
          - type: ndcg_at_3
            value: 26.939999999999998
          - type: ndcg_at_5
            value: 29.177999999999997
          - type: precision_at_1
            value: 22.436
          - type: precision_at_10
            value: 5.908
          - type: precision_at_100
            value: 1.056
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_3
            value: 12.962000000000002
          - type: precision_at_5
            value: 9.476999999999999
          - type: recall_at_1
            value: 18.17
          - type: recall_at_10
            value: 43.219
          - type: recall_at_100
            value: 70.106
          - type: recall_at_1000
            value: 90.04100000000001
          - type: recall_at_3
            value: 30.023
          - type: recall_at_5
            value: 35.845
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 28.016999999999996
          - type: map_at_10
            value: 38.123000000000005
          - type: map_at_100
            value: 39.367000000000004
          - type: map_at_1000
            value: 39.467999999999996
          - type: map_at_3
            value: 34.836
          - type: map_at_5
            value: 36.661
          - type: mrr_at_1
            value: 33.116
          - type: mrr_at_10
            value: 42.211
          - type: mrr_at_100
            value: 43.118
          - type: mrr_at_1000
            value: 43.169000000000004
          - type: mrr_at_3
            value: 39.521
          - type: mrr_at_5
            value: 41.154
          - type: ndcg_at_1
            value: 33.116
          - type: ndcg_at_10
            value: 43.86
          - type: ndcg_at_100
            value: 49.486000000000004
          - type: ndcg_at_1000
            value: 51.487
          - type: ndcg_at_3
            value: 38.303
          - type: ndcg_at_5
            value: 40.927
          - type: precision_at_1
            value: 33.116
          - type: precision_at_10
            value: 7.649
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 17.724
          - type: precision_at_5
            value: 12.668
          - type: recall_at_1
            value: 28.016999999999996
          - type: recall_at_10
            value: 57.032000000000004
          - type: recall_at_100
            value: 81.828
          - type: recall_at_1000
            value: 95.273
          - type: recall_at_3
            value: 41.733
          - type: recall_at_5
            value: 48.496
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 24.295
          - type: map_at_10
            value: 34.94
          - type: map_at_100
            value: 36.659000000000006
          - type: map_at_1000
            value: 36.902
          - type: map_at_3
            value: 31.562
          - type: map_at_5
            value: 33.28
          - type: mrr_at_1
            value: 29.644
          - type: mrr_at_10
            value: 39.467999999999996
          - type: mrr_at_100
            value: 40.561
          - type: mrr_at_1000
            value: 40.61
          - type: mrr_at_3
            value: 36.759
          - type: mrr_at_5
            value: 38.251000000000005
          - type: ndcg_at_1
            value: 29.644
          - type: ndcg_at_10
            value: 41.376000000000005
          - type: ndcg_at_100
            value: 47.701
          - type: ndcg_at_1000
            value: 49.925999999999995
          - type: ndcg_at_3
            value: 36.009
          - type: ndcg_at_5
            value: 38.23
          - type: precision_at_1
            value: 29.644
          - type: precision_at_10
            value: 8.182
          - type: precision_at_100
            value: 1.672
          - type: precision_at_1000
            value: 0.253
          - type: precision_at_3
            value: 17.325
          - type: precision_at_5
            value: 12.450999999999999
          - type: recall_at_1
            value: 24.295
          - type: recall_at_10
            value: 54.478
          - type: recall_at_100
            value: 81.85
          - type: recall_at_1000
            value: 95.395
          - type: recall_at_3
            value: 39.121
          - type: recall_at_5
            value: 45.465
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
        metrics:
          - type: map_at_1
            value: 19.476
          - type: map_at_10
            value: 28.274
          - type: map_at_100
            value: 29.509999999999998
          - type: map_at_1000
            value: 29.614
          - type: map_at_3
            value: 25.413000000000004
          - type: map_at_5
            value: 26.758
          - type: mrr_at_1
            value: 20.887
          - type: mrr_at_10
            value: 29.975
          - type: mrr_at_100
            value: 31.063000000000002
          - type: mrr_at_1000
            value: 31.14
          - type: mrr_at_3
            value: 27.326
          - type: mrr_at_5
            value: 28.666000000000004
          - type: ndcg_at_1
            value: 20.887
          - type: ndcg_at_10
            value: 33.456
          - type: ndcg_at_100
            value: 39.421
          - type: ndcg_at_1000
            value: 41.873
          - type: ndcg_at_3
            value: 27.755000000000003
          - type: ndcg_at_5
            value: 30.032999999999998
          - type: precision_at_1
            value: 20.887
          - type: precision_at_10
            value: 5.601
          - type: precision_at_100
            value: 0.915
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 12.076
          - type: precision_at_5
            value: 8.613999999999999
          - type: recall_at_1
            value: 19.476
          - type: recall_at_10
            value: 47.772999999999996
          - type: recall_at_100
            value: 75.031
          - type: recall_at_1000
            value: 92.96
          - type: recall_at_3
            value: 32.221
          - type: recall_at_5
            value: 37.68
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
        metrics:
          - type: map_at_1
            value: 8.341999999999999
          - type: map_at_10
            value: 14.524000000000001
          - type: map_at_100
            value: 16.114
          - type: map_at_1000
            value: 16.301
          - type: map_at_3
            value: 11.904
          - type: map_at_5
            value: 13.175
          - type: mrr_at_1
            value: 18.892999999999997
          - type: mrr_at_10
            value: 29.185
          - type: mrr_at_100
            value: 30.368000000000002
          - type: mrr_at_1000
            value: 30.418
          - type: mrr_at_3
            value: 25.548
          - type: mrr_at_5
            value: 27.708
          - type: ndcg_at_1
            value: 18.892999999999997
          - type: ndcg_at_10
            value: 21.572
          - type: ndcg_at_100
            value: 28.51
          - type: ndcg_at_1000
            value: 32.204
          - type: ndcg_at_3
            value: 16.753
          - type: ndcg_at_5
            value: 18.5
          - type: precision_at_1
            value: 18.892999999999997
          - type: precision_at_10
            value: 6.997000000000001
          - type: precision_at_100
            value: 1.433
          - type: precision_at_1000
            value: 0.211
          - type: precision_at_3
            value: 12.53
          - type: precision_at_5
            value: 10.098
          - type: recall_at_1
            value: 8.341999999999999
          - type: recall_at_10
            value: 27.215
          - type: recall_at_100
            value: 51.534
          - type: recall_at_1000
            value: 72.655
          - type: recall_at_3
            value: 15.634
          - type: recall_at_5
            value: 20.227
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: f097057d03ed98220bc7309ddb10b71a54d667d6
        metrics:
          - type: map_at_1
            value: 7.5920000000000005
          - type: map_at_10
            value: 15.42
          - type: map_at_100
            value: 21.269
          - type: map_at_1000
            value: 22.55
          - type: map_at_3
            value: 11.221
          - type: map_at_5
            value: 13.225999999999999
          - type: mrr_at_1
            value: 58.25
          - type: mrr_at_10
            value: 66.237
          - type: mrr_at_100
            value: 66.74799999999999
          - type: mrr_at_1000
            value: 66.762
          - type: mrr_at_3
            value: 64.167
          - type: mrr_at_5
            value: 65.229
          - type: ndcg_at_1
            value: 45.625
          - type: ndcg_at_10
            value: 33.355000000000004
          - type: ndcg_at_100
            value: 37.484
          - type: ndcg_at_1000
            value: 44.523
          - type: ndcg_at_3
            value: 37.879000000000005
          - type: ndcg_at_5
            value: 35.841
          - type: precision_at_1
            value: 58.25
          - type: precision_at_10
            value: 26.450000000000003
          - type: precision_at_100
            value: 8.290000000000001
          - type: precision_at_1000
            value: 1.744
          - type: precision_at_3
            value: 40.75
          - type: precision_at_5
            value: 35
          - type: recall_at_1
            value: 7.5920000000000005
          - type: recall_at_10
            value: 20.064
          - type: recall_at_100
            value: 43.187
          - type: recall_at_1000
            value: 66.154
          - type: recall_at_3
            value: 12.366000000000001
          - type: recall_at_5
            value: 15.631
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 829147f8f75a25f005913200eb5ed41fae320aa1
        metrics:
          - type: accuracy
            value: 41.17
          - type: f1
            value: 36.961926373935974
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
        metrics:
          - type: map_at_1
            value: 37.361
          - type: map_at_10
            value: 49.407000000000004
          - type: map_at_100
            value: 50.11600000000001
          - type: map_at_1000
            value: 50.151999999999994
          - type: map_at_3
            value: 46.608
          - type: map_at_5
            value: 48.286
          - type: mrr_at_1
            value: 40.204
          - type: mrr_at_10
            value: 52.714000000000006
          - type: mrr_at_100
            value: 53.347
          - type: mrr_at_1000
            value: 53.373000000000005
          - type: mrr_at_3
            value: 49.935
          - type: mrr_at_5
            value: 51.626000000000005
          - type: ndcg_at_1
            value: 40.204
          - type: ndcg_at_10
            value: 55.905
          - type: ndcg_at_100
            value: 59.229
          - type: ndcg_at_1000
            value: 60.077000000000005
          - type: ndcg_at_3
            value: 50.367
          - type: ndcg_at_5
            value: 53.291999999999994
          - type: precision_at_1
            value: 40.204
          - type: precision_at_10
            value: 8
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 20.997
          - type: precision_at_5
            value: 14.215
          - type: recall_at_1
            value: 37.361
          - type: recall_at_10
            value: 72.775
          - type: recall_at_100
            value: 87.883
          - type: recall_at_1000
            value: 94.204
          - type: recall_at_3
            value: 57.830000000000005
          - type: recall_at_5
            value: 64.888
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
        metrics:
          - type: map_at_1
            value: 18.257
          - type: map_at_10
            value: 29.694
          - type: map_at_100
            value: 31.593
          - type: map_at_1000
            value: 31.795
          - type: map_at_3
            value: 25.778000000000002
          - type: map_at_5
            value: 27.901999999999997
          - type: mrr_at_1
            value: 36.574
          - type: mrr_at_10
            value: 45.562000000000005
          - type: mrr_at_100
            value: 46.479
          - type: mrr_at_1000
            value: 46.52
          - type: mrr_at_3
            value: 43.184
          - type: mrr_at_5
            value: 44.558
          - type: ndcg_at_1
            value: 36.574
          - type: ndcg_at_10
            value: 37.274
          - type: ndcg_at_100
            value: 44.379000000000005
          - type: ndcg_at_1000
            value: 47.803000000000004
          - type: ndcg_at_3
            value: 33.999
          - type: ndcg_at_5
            value: 34.927
          - type: precision_at_1
            value: 36.574
          - type: precision_at_10
            value: 10.571
          - type: precision_at_100
            value: 1.779
          - type: precision_at_1000
            value: 0.23700000000000002
          - type: precision_at_3
            value: 22.942
          - type: precision_at_5
            value: 16.944
          - type: recall_at_1
            value: 18.257
          - type: recall_at_10
            value: 43.46
          - type: recall_at_100
            value: 70.017
          - type: recall_at_1000
            value: 90.838
          - type: recall_at_3
            value: 30.520999999999997
          - type: recall_at_5
            value: 35.977
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
        metrics:
          - type: map_at_1
            value: 25.935000000000002
          - type: map_at_10
            value: 35.96
          - type: map_at_100
            value: 36.811
          - type: map_at_1000
            value: 36.894
          - type: map_at_3
            value: 33.479
          - type: map_at_5
            value: 34.93
          - type: mrr_at_1
            value: 51.870000000000005
          - type: mrr_at_10
            value: 59.671
          - type: mrr_at_100
            value: 60.153
          - type: mrr_at_1000
            value: 60.183
          - type: mrr_at_3
            value: 57.815000000000005
          - type: mrr_at_5
            value: 58.965999999999994
          - type: ndcg_at_1
            value: 51.870000000000005
          - type: ndcg_at_10
            value: 44.589
          - type: ndcg_at_100
            value: 48.113
          - type: ndcg_at_1000
            value: 49.962
          - type: ndcg_at_3
            value: 40.304
          - type: ndcg_at_5
            value: 42.543
          - type: precision_at_1
            value: 51.870000000000005
          - type: precision_at_10
            value: 9.454
          - type: precision_at_100
            value: 1.225
          - type: precision_at_1000
            value: 0.147
          - type: precision_at_3
            value: 25.131999999999998
          - type: precision_at_5
            value: 16.851
          - type: recall_at_1
            value: 25.935000000000002
          - type: recall_at_10
            value: 47.272
          - type: recall_at_100
            value: 61.229
          - type: recall_at_1000
            value: 73.55199999999999
          - type: recall_at_3
            value: 37.698
          - type: recall_at_5
            value: 42.126999999999995
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
        metrics:
          - type: accuracy
            value: 59.76079999999999
          - type: ap
            value: 55.90381572041755
          - type: f1
            value: 58.99832553463791
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
        metrics:
          - type: map_at_1
            value: 20.666999999999998
          - type: map_at_10
            value: 32.425
          - type: map_at_100
            value: 33.586
          - type: map_at_1000
            value: 33.643
          - type: map_at_3
            value: 28.836000000000002
          - type: map_at_5
            value: 30.847
          - type: mrr_at_1
            value: 21.275
          - type: mrr_at_10
            value: 33.062999999999995
          - type: mrr_at_100
            value: 34.168
          - type: mrr_at_1000
            value: 34.217999999999996
          - type: mrr_at_3
            value: 29.491
          - type: mrr_at_5
            value: 31.502999999999997
          - type: ndcg_at_1
            value: 21.246000000000002
          - type: ndcg_at_10
            value: 39.034
          - type: ndcg_at_100
            value: 44.768
          - type: ndcg_at_1000
            value: 46.2
          - type: ndcg_at_3
            value: 31.652
          - type: ndcg_at_5
            value: 35.257
          - type: precision_at_1
            value: 21.246000000000002
          - type: precision_at_10
            value: 6.196
          - type: precision_at_100
            value: 0.909
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 13.547999999999998
          - type: precision_at_5
            value: 9.946000000000002
          - type: recall_at_1
            value: 20.666999999999998
          - type: recall_at_10
            value: 59.321999999999996
          - type: recall_at_100
            value: 86.158
          - type: recall_at_1000
            value: 97.154
          - type: recall_at_3
            value: 39.160000000000004
          - type: recall_at_5
            value: 47.82
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 91.89922480620154
          - type: f1
            value: 91.66762682851963
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 72.03719357565511
          - type: f1
            value: 68.75742308679864
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 72.98532354903269
          - type: f1
            value: 71.33173021994274
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 75.59348575007829
          - type: f1
            value: 73.1511918522243
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 40.36213696665471
          - type: f1
            value: 37.865703085609475
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
        metrics:
          - type: accuracy
            value: 17.099457504520796
          - type: f1
            value: 12.86835498185132
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 62.83629730962153
          - type: f1
            value: 44.241027031016735
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 43.412228796844175
          - type: f1
            value: 25.96122949091921
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 41.8812541694463
          - type: f1
            value: 27.93481154758236
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 38.93830253679925
          - type: f1
            value: 25.820783392796052
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 17.7518823951237
          - type: f1
            value: 11.681226129204576
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: 6299947a7777084cc2d4b64235bf7190381ce755
        metrics:
          - type: accuracy
            value: 5.631103074141048
          - type: f1
            value: 2.046543337618445
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.94082044384667
          - type: f1
            value: 36.222023448848596
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 2.451244115669133
          - type: f1
            value: 1.1859369824825732
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 20.938130464021523
          - type: f1
            value: 17.984223607695032
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 34.25016812373907
          - type: f1
            value: 33.954933856088616
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 13.665097511768659
          - type: f1
            value: 12.091606412618153
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.7128446536651
          - type: f1
            value: 33.62071051640523
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.425016812373904
          - type: f1
            value: 41.20770166767181
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.1661062542031
          - type: f1
            value: 40.374580049860995
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 28.698722259583054
          - type: f1
            value: 24.131330009557754
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 67.14862138533961
          - type: f1
            value: 65.29267177342918
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.907868190988566
          - type: f1
            value: 39.705805513162154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 23.517148621385342
          - type: f1
            value: 20.450403227141454
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 39.27370544720915
          - type: f1
            value: 36.44557663703388
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 44.81506388702085
          - type: f1
            value: 42.61335088326293
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 23.648285137861468
          - type: f1
            value: 19.948568467541378
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 17.97579018157364
          - type: f1
            value: 16.06739661356912
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 37.995965030262276
          - type: f1
            value: 35.26841971527663
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 8.691997310020176
          - type: f1
            value: 7.237344584036491
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 39.66039004707465
          - type: f1
            value: 38.775085127634476
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.141223940820446
          - type: f1
            value: 33.61281534585094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 43.17081371889711
          - type: f1
            value: 41.80158989235553
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 30.944855413584392
          - type: f1
            value: 27.785702058036733
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 36.69468728984533
          - type: f1
            value: 34.21258336813279
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 9.169468728984533
          - type: f1
            value: 6.904570655222885
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 4.986550100874243
          - type: f1
            value: 1.7161855654054863
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 3.0766644250168125
          - type: f1
            value: 1.9577724201468871
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 19.966375252185607
          - type: f1
            value: 16.545470254940454
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.61129791526564
          - type: f1
            value: 37.447802930149614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 2.85137861466039
          - type: f1
            value: 0.8642500845287098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 23.24815063887021
          - type: f1
            value: 22.162182623622098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 36.21385339609952
          - type: f1
            value: 33.62879988681565
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 4.381304640215198
          - type: f1
            value: 1.4197071894925672
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.91324815063887
          - type: f1
            value: 38.890562616282196
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.85272360457296
          - type: f1
            value: 38.79874724974811
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 37.632817753866846
          - type: f1
            value: 34.5071421221765
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 45.12104909213182
          - type: f1
            value: 43.32946794837761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.71486213853396
          - type: f1
            value: 39.500043810450016
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 26.3315400134499
          - type: f1
            value: 24.213252556865477
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.52051109616678
          - type: f1
            value: 37.07900132022834
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 41.62071284465367
          - type: f1
            value: 39.89522566274897
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 40.416946872898464
          - type: f1
            value: 38.43895125974106
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.27908540685945
          - type: f1
            value: 33.8079098469717
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 13.096839273705447
          - type: f1
            value: 10.24267220963294
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 2.5622057834566236
          - type: f1
            value: 1.0615210594147622
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 10.537995965030262
          - type: f1
            value: 6.1708791409070995
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 38.56086079354405
          - type: f1
            value: 35.015690080151465
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 35.897780766644246
          - type: f1
            value: 33.90602650751521
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 16.1768661735037
          - type: f1
            value: 15.713925259255651
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 37.37726967047747
          - type: f1
            value: 35.652051460172906
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 23.74243443174176
          - type: f1
            value: 19.255371431159425
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
        metrics:
          - type: accuracy
            value: 22.387357094821787
          - type: f1
            value: 19.094067620374382
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.709482178883654
          - type: f1
            value: 43.61228850391169
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 7.407531943510423
          - type: f1
            value: 3.8875366763112984
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.61936785474109
          - type: f1
            value: 25.329931057423753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.57969065232011
          - type: f1
            value: 37.39258432617311
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 18.9778076664425
          - type: f1
            value: 17.620144033142864
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.40215198386012
          - type: f1
            value: 38.06372767307641
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.46872898453262
          - type: f1
            value: 46.90610579296604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 52.07128446536652
          - type: f1
            value: 49.46913533778989
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 35.50773369199731
          - type: f1
            value: 31.66524248503607
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.57632817753867
          - type: f1
            value: 73.95638454943459
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.743106926698054
          - type: f1
            value: 48.200939058933415
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 29.004707464694015
          - type: f1
            value: 25.784529950699753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.80026899798252
          - type: f1
            value: 41.79459465764992
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 53.7626092804304
          - type: f1
            value: 51.70423088264189
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.682582380632148
          - type: f1
            value: 23.16790314457902
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 23.022864828513782
          - type: f1
            value: 21.459384490296486
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.08540685944856
          - type: f1
            value: 40.99340260145573
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 14.83187626092804
          - type: f1
            value: 12.970096153546534
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.34767989240081
          - type: f1
            value: 42.21539278376439
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.08002689979825
          - type: f1
            value: 40.01184510787284
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 51.71486213853396
          - type: f1
            value: 48.49232807960585
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 36.748486886348346
          - type: f1
            value: 35.46615048175051
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.56624075319435
          - type: f1
            value: 40.90741041356553
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 14.83523873570948
          - type: f1
            value: 12.296442463483718
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 9.754539340954944
          - type: f1
            value: 4.250353307219123
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 8.315400134498994
          - type: f1
            value: 5.388118548783403
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.719569603227978
          - type: f1
            value: 23.20523005165416
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.74714189643578
          - type: f1
            value: 40.61202626722604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 7.252858103564222
          - type: f1
            value: 3.448646759763805
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 29.034969737726968
          - type: f1
            value: 26.63495414552696
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.64694014794889
          - type: f1
            value: 40.192107405242155
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 10.067249495628783
          - type: f1
            value: 5.764723442216905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.357094821788834
          - type: f1
            value: 44.596914417443266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.15265635507734
          - type: f1
            value: 46.15820727175712
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.72091459314056
          - type: f1
            value: 42.88213581673335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 52.99932750504372
          - type: f1
            value: 51.01176637403334
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.97310020174849
          - type: f1
            value: 47.22673671303613
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 28.74915938130464
          - type: f1
            value: 27.25888866616121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.2595830531271
          - type: f1
            value: 41.261927156734785
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.13584398117014
          - type: f1
            value: 47.08320600523055
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.82582380632145
          - type: f1
            value: 43.40423470084757
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.18426361802287
          - type: f1
            value: 39.815480841992084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 19.3813046402152
          - type: f1
            value: 16.699966519668614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 7.737054472091459
          - type: f1
            value: 3.8594459698077364
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 18.31540013449899
          - type: f1
            value: 13.491482848005418
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.305312710154666
          - type: f1
            value: 45.48790821413181
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.792199058507066
          - type: f1
            value: 41.24552662271258
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 24.462004034969738
          - type: f1
            value: 22.270575649981797
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.94149293880296
          - type: f1
            value: 39.08540872012287
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 33.17753866845998
          - type: f1
            value: 31.64001182395128
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 31.15669132481506
          - type: f1
            value: 30.89137619124565
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: dcefc037ef84348e49b0d29109e891c01067226b
        metrics:
          - type: v_measure
            value: 34.24621118290122
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
        metrics:
          - type: v_measure
            value: 32.24202424478886
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.024522945679166
          - type: mrr
            value: 32.018722362966635
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
        metrics:
          - type: map_at_1
            value: 5.156000000000001
          - type: map_at_10
            value: 11.551
          - type: map_at_100
            value: 14.938
          - type: map_at_1000
            value: 16.366
          - type: map_at_3
            value: 8.118
          - type: map_at_5
            value: 9.918000000000001
          - type: mrr_at_1
            value: 42.415000000000006
          - type: mrr_at_10
            value: 51.571999999999996
          - type: mrr_at_100
            value: 52.126
          - type: mrr_at_1000
            value: 52.171
          - type: mrr_at_3
            value: 49.02
          - type: mrr_at_5
            value: 50.50599999999999
          - type: ndcg_at_1
            value: 39.783
          - type: ndcg_at_10
            value: 32.25
          - type: ndcg_at_100
            value: 30.089
          - type: ndcg_at_1000
            value: 38.86
          - type: ndcg_at_3
            value: 36.962
          - type: ndcg_at_5
            value: 35.292
          - type: precision_at_1
            value: 41.796
          - type: precision_at_10
            value: 24.272
          - type: precision_at_100
            value: 7.963000000000001
          - type: precision_at_1000
            value: 2.07
          - type: precision_at_3
            value: 35.397
          - type: precision_at_5
            value: 31.022
          - type: recall_at_1
            value: 5.156000000000001
          - type: recall_at_10
            value: 15.468000000000002
          - type: recall_at_100
            value: 31.049
          - type: recall_at_1000
            value: 63.148
          - type: recall_at_3
            value: 9.078999999999999
          - type: recall_at_5
            value: 12.275
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
        metrics:
          - type: map_at_1
            value: 23.672
          - type: map_at_10
            value: 38.452
          - type: map_at_100
            value: 39.705
          - type: map_at_1000
            value: 39.742
          - type: map_at_3
            value: 33.806999999999995
          - type: map_at_5
            value: 36.576
          - type: mrr_at_1
            value: 26.854
          - type: mrr_at_10
            value: 40.822
          - type: mrr_at_100
            value: 41.801
          - type: mrr_at_1000
            value: 41.827999999999996
          - type: mrr_at_3
            value: 36.824
          - type: mrr_at_5
            value: 39.312000000000005
          - type: ndcg_at_1
            value: 26.854
          - type: ndcg_at_10
            value: 46.469
          - type: ndcg_at_100
            value: 51.756
          - type: ndcg_at_1000
            value: 52.601
          - type: ndcg_at_3
            value: 37.623
          - type: ndcg_at_5
            value: 42.324
          - type: precision_at_1
            value: 26.854
          - type: precision_at_10
            value: 8.189
          - type: precision_at_100
            value: 1.11
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 17.718999999999998
          - type: precision_at_5
            value: 13.291
          - type: recall_at_1
            value: 23.672
          - type: recall_at_10
            value: 68.639
          - type: recall_at_100
            value: 91.546
          - type: recall_at_1000
            value: 97.794
          - type: recall_at_3
            value: 45.643
          - type: recall_at_5
            value: 56.523
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
        metrics:
          - type: map_at_1
            value: 69.667
          - type: map_at_10
            value: 83.83500000000001
          - type: map_at_100
            value: 84.479
          - type: map_at_1000
            value: 84.494
          - type: map_at_3
            value: 80.759
          - type: map_at_5
            value: 82.657
          - type: mrr_at_1
            value: 80.46
          - type: mrr_at_10
            value: 86.83800000000001
          - type: mrr_at_100
            value: 86.944
          - type: mrr_at_1000
            value: 86.945
          - type: mrr_at_3
            value: 85.815
          - type: mrr_at_5
            value: 86.508
          - type: ndcg_at_1
            value: 80.46
          - type: ndcg_at_10
            value: 87.752
          - type: ndcg_at_100
            value: 88.973
          - type: ndcg_at_1000
            value: 89.072
          - type: ndcg_at_3
            value: 84.735
          - type: ndcg_at_5
            value: 86.371
          - type: precision_at_1
            value: 80.46
          - type: precision_at_10
            value: 13.452
          - type: precision_at_100
            value: 1.532
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.187
          - type: precision_at_5
            value: 24.5
          - type: recall_at_1
            value: 69.667
          - type: recall_at_10
            value: 95.329
          - type: recall_at_100
            value: 99.52
          - type: recall_at_1000
            value: 99.991
          - type: recall_at_3
            value: 86.696
          - type: recall_at_5
            value: 91.346
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: b2805658ae38990172679479369a78b86de8c390
        metrics:
          - type: v_measure
            value: 51.177545122684634
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 54.804652123126985
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
        metrics:
          - type: map_at_1
            value: 5.162
          - type: map_at_10
            value: 13.168
          - type: map_at_100
            value: 15.766
          - type: map_at_1000
            value: 16.136
          - type: map_at_3
            value: 9.180000000000001
          - type: map_at_5
            value: 11.205
          - type: mrr_at_1
            value: 25.5
          - type: mrr_at_10
            value: 36.617
          - type: mrr_at_100
            value: 37.814
          - type: mrr_at_1000
            value: 37.86
          - type: mrr_at_3
            value: 33.15
          - type: mrr_at_5
            value: 35.29
          - type: ndcg_at_1
            value: 25.5
          - type: ndcg_at_10
            value: 21.818
          - type: ndcg_at_100
            value: 31.302999999999997
          - type: ndcg_at_1000
            value: 37.175000000000004
          - type: ndcg_at_3
            value: 20.358999999999998
          - type: ndcg_at_5
            value: 18.169
          - type: precision_at_1
            value: 25.5
          - type: precision_at_10
            value: 11.32
          - type: precision_at_100
            value: 2.495
          - type: precision_at_1000
            value: 0.38899999999999996
          - type: precision_at_3
            value: 18.833
          - type: precision_at_5
            value: 16.06
          - type: recall_at_1
            value: 5.162
          - type: recall_at_10
            value: 22.932
          - type: recall_at_100
            value: 50.598
          - type: recall_at_1000
            value: 79.053
          - type: recall_at_3
            value: 11.442
          - type: recall_at_5
            value: 16.272000000000002
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 84.73414727754201
          - type: cos_sim_spearman
            value: 79.3180820145488
          - type: euclidean_pearson
            value: 81.33251162244008
          - type: euclidean_spearman
            value: 79.31808410123591
          - type: manhattan_pearson
            value: 81.24535628962194
          - type: manhattan_spearman
            value: 79.18643136990889
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
        metrics:
          - type: cos_sim_pearson
            value: 82.89241604274538
          - type: cos_sim_spearman
            value: 73.08329002776462
          - type: euclidean_pearson
            value: 78.75856902522398
          - type: euclidean_spearman
            value: 73.0808569122323
          - type: manhattan_pearson
            value: 78.81165127939924
          - type: manhattan_spearman
            value: 73.13358160467396
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
        metrics:
          - type: cos_sim_pearson
            value: 81.65439991719452
          - type: cos_sim_spearman
            value: 82.13398891011764
          - type: euclidean_pearson
            value: 81.63807492339613
          - type: euclidean_spearman
            value: 82.13398891011764
          - type: manhattan_pearson
            value: 81.5983078333819
          - type: manhattan_spearman
            value: 82.11893098949203
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
        metrics:
          - type: cos_sim_pearson
            value: 81.66945263546415
          - type: cos_sim_spearman
            value: 76.7342099954029
          - type: euclidean_pearson
            value: 79.98454905286438
          - type: euclidean_spearman
            value: 76.73420731947648
          - type: manhattan_pearson
            value: 79.98121513026915
          - type: manhattan_spearman
            value: 76.74818574618494
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
        metrics:
          - type: cos_sim_pearson
            value: 84.80085528616004
          - type: cos_sim_spearman
            value: 85.57752600637704
          - type: euclidean_pearson
            value: 84.88803602633503
          - type: euclidean_spearman
            value: 85.57753174543699
          - type: manhattan_pearson
            value: 84.77107707460819
          - type: manhattan_spearman
            value: 85.4531691739887
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
        metrics:
          - type: cos_sim_pearson
            value: 79.32666585707851
          - type: cos_sim_spearman
            value: 80.22692417222228
          - type: euclidean_pearson
            value: 79.847799005588
          - type: euclidean_spearman
            value: 80.22692417222228
          - type: manhattan_pearson
            value: 79.86640649752613
          - type: manhattan_spearman
            value: 80.25939898948658
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 36.97351108396674
          - type: cos_sim_spearman
            value: 43.373159642451846
          - type: euclidean_pearson
            value: 42.343251342924724
          - type: euclidean_spearman
            value: 43.37383732365708
          - type: manhattan_pearson
            value: 42.21420013714062
          - type: manhattan_spearman
            value: 43.27093471564943
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 54.25766812232355
          - type: cos_sim_spearman
            value: 58.70907752953121
          - type: euclidean_pearson
            value: 57.74925638384565
          - type: euclidean_spearman
            value: 58.70907752953121
          - type: manhattan_pearson
            value: 57.53107164585081
          - type: manhattan_spearman
            value: 58.18399071690873
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 2.000902150291317
          - type: cos_sim_spearman
            value: 0.5442319876381565
          - type: euclidean_pearson
            value: 2.0061692624223886
          - type: euclidean_spearman
            value: 0.5442319876381565
          - type: manhattan_pearson
            value: 1.6005243901065973
          - type: manhattan_spearman
            value: 0.8261501538578374
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 31.103076250241756
          - type: cos_sim_spearman
            value: 27.538399556865983
          - type: euclidean_pearson
            value: 31.299966953719917
          - type: euclidean_spearman
            value: 27.538399556865983
          - type: manhattan_pearson
            value: 29.252983940152795
          - type: manhattan_spearman
            value: 24.545142053308506
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 88.92662843843466
          - type: cos_sim_spearman
            value: 88.6282754793921
          - type: euclidean_pearson
            value: 88.9663425476392
          - type: euclidean_spearman
            value: 88.6282754793921
          - type: manhattan_pearson
            value: 89.04213757202741
          - type: manhattan_spearman
            value: 88.8029452722001
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 6.699439791440673
          - type: cos_sim_spearman
            value: 0.42741621491041054
          - type: euclidean_pearson
            value: 7.0939749740816485
          - type: euclidean_spearman
            value: 0.42741621491041054
          - type: manhattan_pearson
            value: 3.7604205840813005
          - type: manhattan_spearman
            value: -1.7995925853478083
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 22.332768127048812
          - type: cos_sim_spearman
            value: 22.011862055263386
          - type: euclidean_pearson
            value: 22.275743114886957
          - type: euclidean_spearman
            value: 22.011862055263386
          - type: manhattan_pearson
            value: 21.382471306976754
          - type: manhattan_spearman
            value: 20.5220742340821
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 78.59529102081041
          - type: cos_sim_spearman
            value: 78.36515013988296
          - type: euclidean_pearson
            value: 79.6578967101581
          - type: euclidean_spearman
            value: 78.36388790924713
          - type: manhattan_pearson
            value: 79.54080618487365
          - type: manhattan_spearman
            value: 78.03366107978795
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 34.19498070710533
          - type: cos_sim_spearman
            value: 30.702559767030923
          - type: euclidean_pearson
            value: 34.28061977250095
          - type: euclidean_spearman
            value: 30.702559767030923
          - type: manhattan_pearson
            value: 34.8122111793038
          - type: manhattan_spearman
            value: 31.40796587790667
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 25.84186641167081
          - type: cos_sim_spearman
            value: 24.28452119168039
          - type: euclidean_pearson
            value: 25.866557000478302
          - type: euclidean_spearman
            value: 24.28452119168039
          - type: manhattan_pearson
            value: 24.273876016721925
          - type: manhattan_spearman
            value: 23.66844883927423
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
        metrics:
          - type: cos_sim_pearson
            value: 31.68262883322153
          - type: cos_sim_spearman
            value: 24.508086225784982
          - type: euclidean_pearson
            value: 32.07775246994894
          - type: euclidean_spearman
            value: 24.508086225784982
          - type: manhattan_pearson
            value: 33.20196765495327
          - type: manhattan_spearman
            value: 27.383641505403627
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 66.82398288868168
          - type: cos_sim_spearman
            value: 65.6697261994716
          - type: euclidean_pearson
            value: 66.84746542331361
          - type: euclidean_spearman
            value: 65.6697261994716
          - type: manhattan_pearson
            value: 66.89947196080837
          - type: manhattan_spearman
            value: 65.61734245758937
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 18.956935297479266
          - type: cos_sim_spearman
            value: 22.525438836468805
          - type: euclidean_pearson
            value: 13.676185827963197
          - type: euclidean_spearman
            value: 22.525438836468805
          - type: manhattan_pearson
            value: 13.749488574260106
          - type: manhattan_spearman
            value: 22.49725541226794
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 43.159634114474954
          - type: cos_sim_spearman
            value: 43.97530387822291
          - type: euclidean_pearson
            value: 42.45018759035119
          - type: euclidean_spearman
            value: 43.97530387822291
          - type: manhattan_pearson
            value: 43.88212906018782
          - type: manhattan_spearman
            value: 44.2344991447187
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 2.9506287366804567
          - type: cos_sim_spearman
            value: 19.21860340477442
          - type: euclidean_pearson
            value: 6.306031200912426
          - type: euclidean_spearman
            value: 19.21860340477442
          - type: manhattan_pearson
            value: 5.968058806485322
          - type: manhattan_spearman
            value: 18.496966556101356
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 17.494702940326327
          - type: cos_sim_spearman
            value: 21.600665598855933
          - type: euclidean_pearson
            value: 19.949878763475876
          - type: euclidean_spearman
            value: 21.600665598855933
          - type: manhattan_pearson
            value: 20.562737979747386
          - type: manhattan_spearman
            value: 21.548415116687096
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 21.455304899947475
          - type: cos_sim_spearman
            value: 17.54247841644246
          - type: euclidean_pearson
            value: 19.954769470444862
          - type: euclidean_spearman
            value: 17.54247841644246
          - type: manhattan_pearson
            value: 20.491628523649304
          - type: manhattan_spearman
            value: 17.984509706975498
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 5.725870260172754
          - type: cos_sim_spearman
            value: 11.187514830423046
          - type: euclidean_pearson
            value: 5.917124931676964
          - type: euclidean_spearman
            value: 11.187514830423046
          - type: manhattan_pearson
            value: 6.374841892742465
          - type: manhattan_spearman
            value: 10.769670996439327
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 23.644675903928903
          - type: cos_sim_spearman
            value: 33.1476054705555
          - type: euclidean_pearson
            value: 27.486723401317015
          - type: euclidean_spearman
            value: 33.14559867176513
          - type: manhattan_pearson
            value: 28.905530853992335
          - type: manhattan_spearman
            value: 32.97179552695711
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 68.19096417445061
          - type: cos_sim_spearman
            value: 69.51402658537921
          - type: euclidean_pearson
            value: 65.89836450895854
          - type: euclidean_spearman
            value: 69.51402658537921
          - type: manhattan_pearson
            value: 65.95918282706997
          - type: manhattan_spearman
            value: 69.66631782067878
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 47.02727261965111
          - type: cos_sim_spearman
            value: 42.85739641224728
          - type: euclidean_pearson
            value: 47.55857919944314
          - type: euclidean_spearman
            value: 42.85739641224728
          - type: manhattan_pearson
            value: 50.24947623020984
          - type: manhattan_spearman
            value: 44.34581665268886
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 52.54253509229287
          - type: cos_sim_spearman
            value: 53.98864875959218
          - type: euclidean_pearson
            value: 52.771474843725464
          - type: euclidean_spearman
            value: 53.98864875959218
          - type: manhattan_pearson
            value: 53.39728391060008
          - type: manhattan_spearman
            value: 54.65413858996554
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 48.017241684543656
          - type: cos_sim_spearman
            value: 47.47536430344332
          - type: euclidean_pearson
            value: 46.94098755337956
          - type: euclidean_spearman
            value: 47.47536430344332
          - type: manhattan_pearson
            value: 47.27489495136295
          - type: manhattan_spearman
            value: 47.75408075281176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 43.16723254329198
          - type: cos_sim_spearman
            value: 42.6695846628273
          - type: euclidean_pearson
            value: 43.37634781317223
          - type: euclidean_spearman
            value: 42.6695846628273
          - type: manhattan_pearson
            value: 46.43632735525556
          - type: manhattan_spearman
            value: 44.399080708250175
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 42.614472380988
          - type: cos_sim_spearman
            value: 44.386615916921755
          - type: euclidean_pearson
            value: 42.602921485579536
          - type: euclidean_spearman
            value: 44.386615916921755
          - type: manhattan_pearson
            value: 39.57742966805997
          - type: manhattan_spearman
            value: 41.12937281700849
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 41.19025498086497
          - type: cos_sim_spearman
            value: 40.70511339346037
          - type: euclidean_pearson
            value: 41.757361379987536
          - type: euclidean_spearman
            value: 40.70511339346037
          - type: manhattan_pearson
            value: 42.12654868854391
          - type: manhattan_spearman
            value: 40.16977290096036
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 42.58930629526249
          - type: cos_sim_spearman
            value: 43.51970789091437
          - type: euclidean_pearson
            value: 42.79780567751299
          - type: euclidean_spearman
            value: 43.51970789091437
          - type: manhattan_pearson
            value: 43.11190678703615
          - type: manhattan_spearman
            value: 43.921331076552214
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 9.14354524166508
          - type: cos_sim_spearman
            value: 1.632087485480262
          - type: euclidean_pearson
            value: 9.808059926397586
          - type: euclidean_spearman
            value: 1.632087485480262
          - type: manhattan_pearson
            value: 15.655877492684972
          - type: manhattan_spearman
            value: 9.084260532390138
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
        metrics:
          - type: cos_sim_pearson
            value: 16.116974803470246
          - type: cos_sim_spearman
            value: 16.903085094570333
          - type: euclidean_pearson
            value: 16.277560475636694
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 20.321632312194925
          - type: manhattan_spearman
            value: 28.17180849095055
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: 8913289635987208e6e7c72789e4be2fe94b6abd
        metrics:
          - type: cos_sim_pearson
            value: 83.75945741541354
          - type: cos_sim_spearman
            value: 83.08944658809418
          - type: euclidean_pearson
            value: 83.5587988852494
          - type: euclidean_spearman
            value: 83.08938533093635
          - type: manhattan_pearson
            value: 83.56896467262781
          - type: manhattan_spearman
            value: 83.11516183577004
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: 56a6d0140cf6356659e2a7c1413286a774468d44
        metrics:
          - type: map
            value: 87.20127714147824
          - type: mrr
            value: 96.44415315983943
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: a75ae049398addde9b70f6b268875f5cbce99089
        metrics:
          - type: map_at_1
            value: 47.483
          - type: map_at_10
            value: 57.18600000000001
          - type: map_at_100
            value: 57.863
          - type: map_at_1000
            value: 57.901
          - type: map_at_3
            value: 53.909
          - type: map_at_5
            value: 55.57299999999999
          - type: mrr_at_1
            value: 50
          - type: mrr_at_10
            value: 58.607
          - type: mrr_at_100
            value: 59.169000000000004
          - type: mrr_at_1000
            value: 59.207
          - type: mrr_at_3
            value: 56.056
          - type: mrr_at_5
            value: 57.422
          - type: ndcg_at_1
            value: 50
          - type: ndcg_at_10
            value: 62.639
          - type: ndcg_at_100
            value: 65.549
          - type: ndcg_at_1000
            value: 66.497
          - type: ndcg_at_3
            value: 56.602
          - type: ndcg_at_5
            value: 59.270999999999994
          - type: precision_at_1
            value: 50
          - type: precision_at_10
            value: 8.833
          - type: precision_at_100
            value: 1.0370000000000001
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 22.222
          - type: precision_at_5
            value: 15
          - type: recall_at_1
            value: 47.483
          - type: recall_at_10
            value: 78.233
          - type: recall_at_100
            value: 91.167
          - type: recall_at_1000
            value: 98.333
          - type: recall_at_3
            value: 61.956
          - type: recall_at_5
            value: 68.43900000000001
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
        metrics:
          - type: cos_sim_accuracy
            value: 99.72871287128713
          - type: cos_sim_ap
            value: 92.44554820122362
          - type: cos_sim_f1
            value: 85.89083419155509
          - type: cos_sim_precision
            value: 88.53503184713377
          - type: cos_sim_recall
            value: 83.39999999999999
          - type: dot_accuracy
            value: 99.72871287128713
          - type: dot_ap
            value: 92.44554820122363
          - type: dot_f1
            value: 85.89083419155509
          - type: dot_precision
            value: 88.53503184713377
          - type: dot_recall
            value: 83.39999999999999
          - type: euclidean_accuracy
            value: 99.72871287128713
          - type: euclidean_ap
            value: 92.44554820122362
          - type: euclidean_f1
            value: 85.89083419155509
          - type: euclidean_precision
            value: 88.53503184713377
          - type: euclidean_recall
            value: 83.39999999999999
          - type: manhattan_accuracy
            value: 99.73267326732673
          - type: manhattan_ap
            value: 92.57860510428624
          - type: manhattan_f1
            value: 86.20170597089813
          - type: manhattan_precision
            value: 86.5055387713998
          - type: manhattan_recall
            value: 85.9
          - type: max_accuracy
            value: 99.73267326732673
          - type: max_ap
            value: 92.57860510428624
          - type: max_f1
            value: 86.20170597089813
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
        metrics:
          - type: v_measure
            value: 53.04887987709521
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
        metrics:
          - type: v_measure
            value: 33.133116286225686
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
        metrics:
          - type: map
            value: 51.4732035634667
          - type: mrr
            value: 52.263880931160344
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
        metrics:
          - type: cos_sim_pearson
            value: 29.365093191497525
          - type: cos_sim_spearman
            value: 27.90160600683062
          - type: dot_pearson
            value: 29.36509564650472
          - type: dot_spearman
            value: 27.90160600683062
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
        metrics:
          - type: map_at_1
            value: 0.17600000000000002
          - type: map_at_10
            value: 1.164
          - type: map_at_100
            value: 6.048
          - type: map_at_1000
            value: 14.913000000000002
          - type: map_at_3
            value: 0.44799999999999995
          - type: map_at_5
            value: 0.658
          - type: mrr_at_1
            value: 64
          - type: mrr_at_10
            value: 73.538
          - type: mrr_at_100
            value: 73.752
          - type: mrr_at_1000
            value: 73.752
          - type: mrr_at_3
            value: 70.667
          - type: mrr_at_5
            value: 72.467
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 50.815999999999995
          - type: ndcg_at_100
            value: 37.662
          - type: ndcg_at_1000
            value: 35.907
          - type: ndcg_at_3
            value: 54.112
          - type: ndcg_at_5
            value: 51.19200000000001
          - type: precision_at_1
            value: 64
          - type: precision_at_10
            value: 55.400000000000006
          - type: precision_at_100
            value: 38.48
          - type: precision_at_1000
            value: 16.012
          - type: precision_at_3
            value: 57.99999999999999
          - type: precision_at_5
            value: 54.800000000000004
          - type: recall_at_1
            value: 0.17600000000000002
          - type: recall_at_10
            value: 1.435
          - type: recall_at_100
            value: 9.122
          - type: recall_at_1000
            value: 34.378
          - type: recall_at_3
            value: 0.47400000000000003
          - type: recall_at_5
            value: 0.736
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
        metrics:
          - type: map_at_1
            value: 1.813
          - type: map_at_10
            value: 6.632000000000001
          - type: map_at_100
            value: 11.485
          - type: map_at_1000
            value: 13.031
          - type: map_at_3
            value: 3.5069999999999997
          - type: map_at_5
            value: 5.183
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 33.035
          - type: mrr_at_100
            value: 34.117
          - type: mrr_at_1000
            value: 34.168
          - type: mrr_at_3
            value: 27.551
          - type: mrr_at_5
            value: 31.326999999999998
          - type: ndcg_at_1
            value: 15.306000000000001
          - type: ndcg_at_10
            value: 17.224
          - type: ndcg_at_100
            value: 29.287999999999997
          - type: ndcg_at_1000
            value: 41.613
          - type: ndcg_at_3
            value: 15.786
          - type: ndcg_at_5
            value: 16.985
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 15.714
          - type: precision_at_100
            value: 6.4079999999999995
          - type: precision_at_1000
            value: 1.451
          - type: precision_at_3
            value: 17.687
          - type: precision_at_5
            value: 18.776
          - type: recall_at_1
            value: 1.813
          - type: recall_at_10
            value: 12.006
          - type: recall_at_100
            value: 41.016999999999996
          - type: recall_at_1000
            value: 78.632
          - type: recall_at_3
            value: 4.476999999999999
          - type: recall_at_5
            value: 7.904999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 67.4694
          - type: ap
            value: 12.602604676283388
          - type: f1
            value: 51.82471949507483
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: 62146448f05be9e52a36b8ee9936447ea787eede
        metrics:
          - type: accuracy
            value: 54.25297113752122
          - type: f1
            value: 54.50148311546008
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
        metrics:
          - type: v_measure
            value: 47.467044776612376
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.78869881385229
          - type: cos_sim_ap
            value: 70.01722500181003
          - type: cos_sim_f1
            value: 65.943384461903
          - type: cos_sim_precision
            value: 62.52069047056041
          - type: cos_sim_recall
            value: 69.76253298153034
          - type: dot_accuracy
            value: 84.78869881385229
          - type: dot_ap
            value: 70.01721947474665
          - type: dot_f1
            value: 65.943384461903
          - type: dot_precision
            value: 62.52069047056041
          - type: dot_recall
            value: 69.76253298153034
          - type: euclidean_accuracy
            value: 84.78869881385229
          - type: euclidean_ap
            value: 70.01721811552584
          - type: euclidean_f1
            value: 65.943384461903
          - type: euclidean_precision
            value: 62.52069047056041
          - type: euclidean_recall
            value: 69.76253298153034
          - type: manhattan_accuracy
            value: 84.68140907194373
          - type: manhattan_ap
            value: 69.90669388421887
          - type: manhattan_f1
            value: 66.00842865743527
          - type: manhattan_precision
            value: 60.70874861572536
          - type: manhattan_recall
            value: 72.32189973614776
          - type: max_accuracy
            value: 84.78869881385229
          - type: max_ap
            value: 70.01722500181003
          - type: max_f1
            value: 66.00842865743527
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.4367601971514
          - type: cos_sim_ap
            value: 84.77318195783158
          - type: cos_sim_f1
            value: 77.13502703503444
          - type: cos_sim_precision
            value: 74.31140288283146
          - type: cos_sim_recall
            value: 80.18170619032954
          - type: dot_accuracy
            value: 88.4367601971514
          - type: dot_ap
            value: 84.77317449778201
          - type: dot_f1
            value: 77.13502703503444
          - type: dot_precision
            value: 74.31140288283146
          - type: dot_recall
            value: 80.18170619032954
          - type: euclidean_accuracy
            value: 88.4367601971514
          - type: euclidean_ap
            value: 84.77314948093711
          - type: euclidean_f1
            value: 77.13502703503444
          - type: euclidean_precision
            value: 74.31140288283146
          - type: euclidean_recall
            value: 80.18170619032954
          - type: manhattan_accuracy
            value: 88.43287926417511
          - type: manhattan_ap
            value: 84.71097141640011
          - type: manhattan_f1
            value: 77.08356453223837
          - type: manhattan_precision
            value: 74.18298326806692
          - type: manhattan_recall
            value: 80.2202032645519
          - type: max_accuracy
            value: 88.4367601971514
          - type: max_ap
            value: 84.77318195783158
          - type: max_f1
            value: 77.13502703503444

all-MiniLM-L12-v2

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see MTEB: https://huggingface.co/spaces/mteb/leaderboard or the Sentence Embeddings Benchmark: https://seb.sbert.net


Background

The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained microsoft/MiniLM-L12-H384-uncased model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.

We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.

Intended uses

Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.

By default, input text longer than 256 word pieces is truncated.

Training procedure

Pre-training

We use the pretrained microsoft/MiniLM-L12-H384-uncased model. Please refer to the model card for more detailed information about the pre-training procedure.

Fine-tuning

We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs.

Hyper parameters

We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: train_script.py.

Training data

We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the data_config.json file.

Dataset Paper Number of training tuples
Reddit comments (2015-2018) paper 726,484,430
S2ORC Citation pairs (Abstracts) paper 116,288,806
WikiAnswers Duplicate question pairs paper 77,427,422
PAQ (Question, Answer) pairs paper 64,371,441
S2ORC Citation pairs (Titles) paper 52,603,982
S2ORC (Title, Abstract) paper 41,769,185
Stack Exchange (Title, Body) pairs - 25,316,456
Stack Exchange (Title+Body, Answer) pairs - 21,396,559
Stack Exchange (Title, Answer) pairs - 21,396,559
MS MARCO triplets paper 9,144,553
GOOAQ: Open Question Answering with Diverse Answer Types paper 3,012,496
Yahoo Answers (Title, Answer) paper 1,198,260
Code Search - 1,151,414
COCO Image captions paper 828,395
SPECTER citation triplets paper 684,100
Yahoo Answers (Question, Answer) paper 681,164
Yahoo Answers (Title, Question) paper 659,896
SearchQA paper 582,261
Eli5 paper 325,475
Flickr 30k paper 317,695
Stack Exchange Duplicate questions (titles) 304,525
AllNLI (SNLI and MultiNLI paper SNLI, paper MultiNLI 277,230
Stack Exchange Duplicate questions (bodies) 250,519
Stack Exchange Duplicate questions (titles+bodies) 250,460
Sentence Compression paper 180,000
Wikihow paper 128,542
Altlex paper 112,696
Quora Question Triplets - 103,663
Simple Wikipedia paper 102,225
Natural Questions (NQ) paper 100,231
SQuAD2.0 paper 87,599
TriviaQA - 73,346
Total 1,170,060,424