metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
license: mit
language:
- en
- ru
Multilingual E5 WB
Fine-tuned version of default multilingual-e5-base for WB DS School and RAG project.
Evaluation Results
As model is used as retriever, goal was to boost its performance at cosine similarity between question and answer. With given dataset of QA pairs model performance on EmbeddingSimilarityEvaluator improved from 0.62 to 0.78.
Fine Tuning
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 790 with parameters:
{'batch_size': 12, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss
with parameters:
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 100,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 790,
"weight_decay": 0.01
}