metadata
license: mit
tags:
- text-classification
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: xnli_xlm_r_only_ur
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: xnli
type: xnli
config: ur
split: train
args: ur
metrics:
- name: Accuracy
type: accuracy
value: 0.41847389558232934
xnli_xlm_r_only_ur
This model is a fine-tuned version of xlm-roberta-base on the xnli dataset. It achieves the following results on the evaluation set:
- Loss: 1.0581
- Accuracy: 0.4185
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0996 | 1.0 | 3068 | 1.0988 | 0.3333 |
1.1 | 2.0 | 6136 | 1.0986 | 0.3333 |
1.0999 | 3.0 | 9204 | 1.0986 | 0.3333 |
1.0998 | 4.0 | 12272 | 1.0988 | 0.3333 |
1.0998 | 5.0 | 15340 | 1.0986 | 0.3333 |
1.0994 | 6.0 | 18408 | 1.0987 | 0.3333 |
1.0994 | 7.0 | 21476 | 1.0987 | 0.3333 |
1.0993 | 8.0 | 24544 | 1.0987 | 0.3333 |
1.0932 | 9.0 | 27612 | 1.0692 | 0.4177 |
1.075 | 10.0 | 30680 | 1.0581 | 0.4185 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1