metadata
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
datasets:
- xnli
metrics:
- accuracy
model-index:
- name: xnli_m_bert_only_en_single_gpu
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: xnli
type: xnli
config: en
split: train
args: en
metrics:
- name: Accuracy
type: accuracy
value: 0.810843373493976
xnli_m_bert_only_en_single_gpu
This model is a fine-tuned version of bert-base-multilingual-cased on the xnli dataset. It achieves the following results on the evaluation set:
- Loss: 0.5306
- Accuracy: 0.8108
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8884 | 0.04 | 1000 | 0.7743 | 0.6703 |
0.782 | 0.08 | 2000 | 0.7029 | 0.7060 |
0.7479 | 0.12 | 3000 | 0.7366 | 0.6880 |
0.7348 | 0.16 | 4000 | 0.6722 | 0.7285 |
0.721 | 0.2 | 5000 | 0.6802 | 0.7237 |
0.7097 | 0.24 | 6000 | 0.6801 | 0.7217 |
0.6978 | 0.29 | 7000 | 0.6051 | 0.7643 |
0.6924 | 0.33 | 8000 | 0.6793 | 0.7357 |
0.6807 | 0.37 | 9000 | 0.6604 | 0.7502 |
0.6636 | 0.41 | 10000 | 0.6309 | 0.7430 |
0.6616 | 0.45 | 11000 | 0.6039 | 0.7490 |
0.6561 | 0.49 | 12000 | 0.6051 | 0.7610 |
0.6545 | 0.53 | 13000 | 0.6354 | 0.7454 |
0.644 | 0.57 | 14000 | 0.6064 | 0.7466 |
0.6446 | 0.61 | 15000 | 0.6052 | 0.7554 |
0.6414 | 0.65 | 16000 | 0.6365 | 0.7422 |
0.6311 | 0.69 | 17000 | 0.6118 | 0.7546 |
0.6187 | 0.73 | 18000 | 0.5973 | 0.7538 |
0.619 | 0.77 | 19000 | 0.5863 | 0.7570 |
0.6108 | 0.81 | 20000 | 0.6212 | 0.7490 |
0.6136 | 0.86 | 21000 | 0.5810 | 0.7695 |
0.6018 | 0.9 | 22000 | 0.5799 | 0.7731 |
0.6198 | 0.94 | 23000 | 0.5548 | 0.7723 |
0.6047 | 0.98 | 24000 | 0.5964 | 0.7622 |
0.5636 | 1.02 | 25000 | 0.5805 | 0.7851 |
0.5267 | 1.06 | 26000 | 0.5540 | 0.7795 |
0.5067 | 1.1 | 27000 | 0.5388 | 0.7855 |
0.5304 | 1.14 | 28000 | 0.5482 | 0.7799 |
0.5332 | 1.18 | 29000 | 0.5290 | 0.7859 |
0.5154 | 1.22 | 30000 | 0.5475 | 0.7799 |
0.524 | 1.26 | 31000 | 0.5305 | 0.7900 |
0.5236 | 1.3 | 32000 | 0.5691 | 0.7871 |
0.5154 | 1.34 | 33000 | 0.5642 | 0.7739 |
0.5248 | 1.39 | 34000 | 0.5590 | 0.7643 |
0.5077 | 1.43 | 35000 | 0.6064 | 0.7715 |
0.5147 | 1.47 | 36000 | 0.5343 | 0.7948 |
0.5041 | 1.51 | 37000 | 0.5375 | 0.7867 |
0.5054 | 1.55 | 38000 | 0.5660 | 0.7727 |
0.5053 | 1.59 | 39000 | 0.5479 | 0.7859 |
0.5009 | 1.63 | 40000 | 0.5080 | 0.7960 |
0.5081 | 1.67 | 41000 | 0.5139 | 0.7920 |
0.5013 | 1.71 | 42000 | 0.5385 | 0.7904 |
0.4972 | 1.75 | 43000 | 0.5257 | 0.7928 |
0.4987 | 1.79 | 44000 | 0.5056 | 0.8020 |
0.4863 | 1.83 | 45000 | 0.5030 | 0.8004 |
0.5 | 1.87 | 46000 | 0.5157 | 0.7980 |
0.4926 | 1.91 | 47000 | 0.5505 | 0.7924 |
0.4893 | 1.96 | 48000 | 0.5286 | 0.8004 |
0.4755 | 2.0 | 49000 | 0.5216 | 0.8036 |
0.3855 | 2.04 | 50000 | 0.6087 | 0.7884 |
0.3731 | 2.08 | 51000 | 0.5485 | 0.8064 |
0.3698 | 2.12 | 52000 | 0.5398 | 0.8080 |
0.3702 | 2.16 | 53000 | 0.5454 | 0.8 |
0.3688 | 2.2 | 54000 | 0.5512 | 0.8068 |
0.3683 | 2.24 | 55000 | 0.5423 | 0.8060 |
0.3704 | 2.28 | 56000 | 0.5383 | 0.8084 |
0.3758 | 2.32 | 57000 | 0.5398 | 0.8161 |
0.3781 | 2.36 | 58000 | 0.5481 | 0.8088 |
0.3697 | 2.4 | 59000 | 0.5465 | 0.8056 |
0.3706 | 2.44 | 60000 | 0.5488 | 0.7988 |
0.3704 | 2.49 | 61000 | 0.5395 | 0.8052 |
0.3648 | 2.53 | 62000 | 0.5463 | 0.8068 |
0.36 | 2.57 | 63000 | 0.5400 | 0.8052 |
0.3661 | 2.61 | 64000 | 0.5542 | 0.8068 |
0.3555 | 2.65 | 65000 | 0.5424 | 0.8044 |
0.3551 | 2.69 | 66000 | 0.5269 | 0.8124 |
0.3608 | 2.73 | 67000 | 0.5382 | 0.8129 |
0.35 | 2.77 | 68000 | 0.5461 | 0.8108 |
0.3457 | 2.81 | 69000 | 0.5477 | 0.8084 |
0.3516 | 2.85 | 70000 | 0.5345 | 0.8104 |
0.3499 | 2.89 | 71000 | 0.5344 | 0.8129 |
0.3513 | 2.93 | 72000 | 0.5279 | 0.8120 |
0.3442 | 2.97 | 73000 | 0.5306 | 0.8108 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1