metadata
license: mit
tags:
- text-classification
- generated_from_trainer
datasets:
- paws-x
metrics:
- accuracy
model-index:
- name: paws_x_xlm_r_only_fr
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: paws-x
type: paws-x
config: fr
split: train
args: fr
metrics:
- name: Accuracy
type: accuracy
value: 0.91
paws_x_xlm_r_only_fr
This model is a fine-tuned version of xlm-roberta-base on the paws-x dataset. It achieves the following results on the evaluation set:
- Loss: 0.4059
- Accuracy: 0.91
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4715 | 1.0 | 386 | 0.3379 | 0.8785 |
0.2389 | 2.0 | 772 | 0.2734 | 0.899 |
0.1824 | 3.0 | 1158 | 0.2861 | 0.901 |
0.1436 | 4.0 | 1544 | 0.2794 | 0.908 |
0.1175 | 5.0 | 1930 | 0.3223 | 0.904 |
0.0968 | 6.0 | 2316 | 0.3209 | 0.9025 |
0.0817 | 7.0 | 2702 | 0.3455 | 0.9045 |
0.0703 | 8.0 | 3088 | 0.3490 | 0.907 |
0.0605 | 9.0 | 3474 | 0.3841 | 0.91 |
0.0542 | 10.0 | 3860 | 0.4059 | 0.91 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1