selmamalak's picture
Model save
91be5f2 verified
|
raw
history blame
2.63 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
datasets:
  - medmnist-v2
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: breastmnist-beit-base-finetuned
    results: []

breastmnist-beit-base-finetuned

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the medmnist-v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5228
  • Accuracy: 0.7308
  • Precision: 0.3654
  • Recall: 0.5
  • F1: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.9143 8 0.8325 0.7308 0.3654 0.5 0.4222
0.7315 1.9429 17 0.5744 0.7308 0.3654 0.5 0.4222
0.6223 2.9714 26 0.5911 0.7308 0.3654 0.5 0.4222
0.5815 4.0 35 0.5743 0.7308 0.3654 0.5 0.4222
0.5627 4.9143 43 0.6546 0.7308 0.3654 0.5 0.4222
0.5552 5.9429 52 0.5381 0.7308 0.3654 0.5 0.4222
0.536 6.9714 61 0.5101 0.7949 0.8904 0.6190 0.6308
0.5454 8.0 70 0.5273 0.7692 0.7246 0.6165 0.6286
0.5454 8.9143 78 0.5176 0.7308 0.3654 0.5 0.4222
0.5058 9.1429 80 0.5228 0.7308 0.3654 0.5 0.4222

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1