Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +291 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 'I have owned this NAS for almost a year now and actually purchased a second
|
14 |
+
one It works flawlessly and QNAP live tech support is superb There is also a fairly
|
15 |
+
comprehensive forum for users as well I have slowly upgraded my capacities as
|
16 |
+
newer larger capacity drives have come out on the market All have been recognized
|
17 |
+
and the space expanded without a hitch I highly recommend this product '
|
18 |
+
- text: Good as expected
|
19 |
+
- text: 'This is a very good video editing package In the past I ve only used Corel
|
20 |
+
video editing products but Cyberlink s offering is on par It offers similar options
|
21 |
+
but they are different enough for me to want to use both products depending on
|
22 |
+
what I m trying to achieve There are quick uploading options that make it very
|
23 |
+
easy to get video onto Youtube and other online video sites '
|
24 |
+
- text: Works great
|
25 |
+
- text: 'This is my favorite crack open the computer and amuse myself for a few hours
|
26 |
+
software Easy to pick up if you have no prior experience with computer animation
|
27 |
+
but advanced enough that someone with the right skills could pull together an
|
28 |
+
impressive movie '
|
29 |
+
inference: true
|
30 |
+
---
|
31 |
+
|
32 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
33 |
+
|
34 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
35 |
+
|
36 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
37 |
+
|
38 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
39 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
40 |
+
|
41 |
+
## Model Details
|
42 |
+
|
43 |
+
### Model Description
|
44 |
+
- **Model Type:** SetFit
|
45 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
46 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
47 |
+
- **Maximum Sequence Length:** 512 tokens
|
48 |
+
- **Number of Classes:** 2 classes
|
49 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
50 |
+
<!-- - **Language:** Unknown -->
|
51 |
+
<!-- - **License:** Unknown -->
|
52 |
+
|
53 |
+
### Model Sources
|
54 |
+
|
55 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
56 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
57 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
58 |
+
|
59 |
+
### Model Labels
|
60 |
+
| Label | Examples |
|
61 |
+
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
62 |
+
| 0 | <ul><li>'Have used Turbo Tax for years Never a problem I m pretty concerned now with the news that many of their users had their returns hacked by people who gained access to Turbo Tax and stole the information Not sure I will use it next year until I research how serious this is was '</li><li>'Can t beat an Apple computer Like P KB best by test '</li><li>'Works for Mac or Pc but not on widows '</li></ul> |
|
63 |
+
| 1 | <ul><li>'Would not install activation code not accepted Returned it '</li><li>'Worth all four of the software programs which are included in this product '</li><li>'The marketing information makes this software look like it should be fabulous lots of useful features that I would love to experiment with However the software just doesn t work I will keep using my very old JASC version of this software instead '</li></ul> |
|
64 |
+
|
65 |
+
## Uses
|
66 |
+
|
67 |
+
### Direct Use for Inference
|
68 |
+
|
69 |
+
First install the SetFit library:
|
70 |
+
|
71 |
+
```bash
|
72 |
+
pip install setfit
|
73 |
+
```
|
74 |
+
|
75 |
+
Then you can load this model and run inference.
|
76 |
+
|
77 |
+
```python
|
78 |
+
from setfit import SetFitModel
|
79 |
+
|
80 |
+
# Download from the 🤗 Hub
|
81 |
+
model = SetFitModel.from_pretrained("selina09/yt_setfit")
|
82 |
+
# Run inference
|
83 |
+
preds = model("Works great")
|
84 |
+
```
|
85 |
+
|
86 |
+
<!--
|
87 |
+
### Downstream Use
|
88 |
+
|
89 |
+
*List how someone could finetune this model on their own dataset.*
|
90 |
+
-->
|
91 |
+
|
92 |
+
<!--
|
93 |
+
### Out-of-Scope Use
|
94 |
+
|
95 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
96 |
+
-->
|
97 |
+
|
98 |
+
<!--
|
99 |
+
## Bias, Risks and Limitations
|
100 |
+
|
101 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
102 |
+
-->
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Recommendations
|
106 |
+
|
107 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
## Training Details
|
111 |
+
|
112 |
+
### Training Set Metrics
|
113 |
+
| Training set | Min | Median | Max |
|
114 |
+
|:-------------|:----|:--------|:----|
|
115 |
+
| Word count | 1 | 34.9207 | 102 |
|
116 |
+
|
117 |
+
| Label | Training Sample Count |
|
118 |
+
|:------|:----------------------|
|
119 |
+
| 0 | 123 |
|
120 |
+
| 1 | 41 |
|
121 |
+
|
122 |
+
### Training Hyperparameters
|
123 |
+
- batch_size: (32, 32)
|
124 |
+
- num_epochs: (10, 10)
|
125 |
+
- max_steps: -1
|
126 |
+
- sampling_strategy: oversampling
|
127 |
+
- body_learning_rate: (2e-05, 1e-05)
|
128 |
+
- head_learning_rate: 0.01
|
129 |
+
- loss: CosineSimilarityLoss
|
130 |
+
- distance_metric: cosine_distance
|
131 |
+
- margin: 0.25
|
132 |
+
- end_to_end: False
|
133 |
+
- use_amp: False
|
134 |
+
- warmup_proportion: 0.1
|
135 |
+
- seed: 42
|
136 |
+
- eval_max_steps: -1
|
137 |
+
- load_best_model_at_end: False
|
138 |
+
|
139 |
+
### Training Results
|
140 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
141 |
+
|:------:|:----:|:-------------:|:---------------:|
|
142 |
+
| 0.0019 | 1 | 0.2503 | - |
|
143 |
+
| 0.0942 | 50 | 0.2406 | - |
|
144 |
+
| 0.1883 | 100 | 0.2029 | - |
|
145 |
+
| 0.2825 | 150 | 0.2207 | - |
|
146 |
+
| 0.3766 | 200 | 0.1612 | - |
|
147 |
+
| 0.4708 | 250 | 0.0725 | - |
|
148 |
+
| 0.5650 | 300 | 0.0163 | - |
|
149 |
+
| 0.6591 | 350 | 0.0108 | - |
|
150 |
+
| 0.7533 | 400 | 0.0153 | - |
|
151 |
+
| 0.8475 | 450 | 0.0486 | - |
|
152 |
+
| 0.9416 | 500 | 0.0191 | - |
|
153 |
+
| 1.0358 | 550 | 0.0207 | - |
|
154 |
+
| 1.1299 | 600 | 0.0148 | - |
|
155 |
+
| 1.2241 | 650 | 0.0031 | - |
|
156 |
+
| 1.3183 | 700 | 0.001 | - |
|
157 |
+
| 1.4124 | 750 | 0.0287 | - |
|
158 |
+
| 1.5066 | 800 | 0.0146 | - |
|
159 |
+
| 1.6008 | 850 | 0.0147 | - |
|
160 |
+
| 1.6949 | 900 | 0.0165 | - |
|
161 |
+
| 1.7891 | 950 | 0.0008 | - |
|
162 |
+
| 1.8832 | 1000 | 0.0165 | - |
|
163 |
+
| 1.9774 | 1050 | 0.0007 | - |
|
164 |
+
| 2.0716 | 1100 | 0.0129 | - |
|
165 |
+
| 2.1657 | 1150 | 0.0143 | - |
|
166 |
+
| 2.2599 | 1200 | 0.0006 | - |
|
167 |
+
| 2.3540 | 1250 | 0.0008 | - |
|
168 |
+
| 2.4482 | 1300 | 0.0047 | - |
|
169 |
+
| 2.5424 | 1350 | 0.0005 | - |
|
170 |
+
| 2.6365 | 1400 | 0.0116 | - |
|
171 |
+
| 2.7307 | 1450 | 0.0093 | - |
|
172 |
+
| 2.8249 | 1500 | 0.0211 | - |
|
173 |
+
| 2.9190 | 1550 | 0.0076 | - |
|
174 |
+
| 3.0132 | 1600 | 0.0047 | - |
|
175 |
+
| 3.1073 | 1650 | 0.0005 | - |
|
176 |
+
| 3.2015 | 1700 | 0.0064 | - |
|
177 |
+
| 3.2957 | 1750 | 0.014 | - |
|
178 |
+
| 3.3898 | 1800 | 0.0479 | - |
|
179 |
+
| 3.4840 | 1850 | 0.0005 | - |
|
180 |
+
| 3.5782 | 1900 | 0.0045 | - |
|
181 |
+
| 3.6723 | 1950 | 0.0188 | - |
|
182 |
+
| 3.7665 | 2000 | 0.0004 | - |
|
183 |
+
| 3.8606 | 2050 | 0.0122 | - |
|
184 |
+
| 3.9548 | 2100 | 0.0004 | - |
|
185 |
+
| 4.0490 | 2150 | 0.008 | - |
|
186 |
+
| 4.1431 | 2200 | 0.0245 | - |
|
187 |
+
| 4.2373 | 2250 | 0.005 | - |
|
188 |
+
| 4.3315 | 2300 | 0.0244 | - |
|
189 |
+
| 4.4256 | 2350 | 0.0208 | - |
|
190 |
+
| 4.5198 | 2400 | 0.0237 | - |
|
191 |
+
| 4.6139 | 2450 | 0.0005 | - |
|
192 |
+
| 4.7081 | 2500 | 0.0004 | - |
|
193 |
+
| 4.8023 | 2550 | 0.02 | - |
|
194 |
+
| 4.8964 | 2600 | 0.0004 | - |
|
195 |
+
| 4.9906 | 2650 | 0.0067 | - |
|
196 |
+
| 5.0847 | 2700 | 0.0099 | - |
|
197 |
+
| 5.1789 | 2750 | 0.0138 | - |
|
198 |
+
| 5.2731 | 2800 | 0.0192 | - |
|
199 |
+
| 5.3672 | 2850 | 0.0217 | - |
|
200 |
+
| 5.4614 | 2900 | 0.0056 | - |
|
201 |
+
| 5.5556 | 2950 | 0.0003 | - |
|
202 |
+
| 5.6497 | 3000 | 0.0052 | - |
|
203 |
+
| 5.7439 | 3050 | 0.0123 | - |
|
204 |
+
| 5.8380 | 3100 | 0.0136 | - |
|
205 |
+
| 5.9322 | 3150 | 0.0221 | - |
|
206 |
+
| 6.0264 | 3200 | 0.0235 | - |
|
207 |
+
| 6.1205 | 3250 | 0.0144 | - |
|
208 |
+
| 6.2147 | 3300 | 0.0174 | - |
|
209 |
+
| 6.3089 | 3350 | 0.007 | - |
|
210 |
+
| 6.4030 | 3400 | 0.0044 | - |
|
211 |
+
| 6.4972 | 3450 | 0.0003 | - |
|
212 |
+
| 6.5913 | 3500 | 0.007 | - |
|
213 |
+
| 6.6855 | 3550 | 0.0004 | - |
|
214 |
+
| 6.7797 | 3600 | 0.0384 | - |
|
215 |
+
| 6.8738 | 3650 | 0.0055 | - |
|
216 |
+
| 6.9680 | 3700 | 0.0056 | - |
|
217 |
+
| 7.0621 | 3750 | 0.0118 | - |
|
218 |
+
| 7.1563 | 3800 | 0.0143 | - |
|
219 |
+
| 7.2505 | 3850 | 0.0289 | - |
|
220 |
+
| 7.3446 | 3900 | 0.0301 | - |
|
221 |
+
| 7.4388 | 3950 | 0.0119 | - |
|
222 |
+
| 7.5330 | 4000 | 0.012 | - |
|
223 |
+
| 7.6271 | 4050 | 0.0138 | - |
|
224 |
+
| 7.7213 | 4100 | 0.0148 | - |
|
225 |
+
| 7.8154 | 4150 | 0.0003 | - |
|
226 |
+
| 7.9096 | 4200 | 0.0268 | - |
|
227 |
+
| 8.0038 | 4250 | 0.0131 | - |
|
228 |
+
| 8.0979 | 4300 | 0.0237 | - |
|
229 |
+
| 8.1921 | 4350 | 0.0004 | - |
|
230 |
+
| 8.2863 | 4400 | 0.0211 | - |
|
231 |
+
| 8.3804 | 4450 | 0.0092 | - |
|
232 |
+
| 8.4746 | 4500 | 0.005 | - |
|
233 |
+
| 8.5687 | 4550 | 0.0056 | - |
|
234 |
+
| 8.6629 | 4600 | 0.0168 | - |
|
235 |
+
| 8.7571 | 4650 | 0.0045 | - |
|
236 |
+
| 8.8512 | 4700 | 0.0184 | - |
|
237 |
+
| 8.9454 | 4750 | 0.0049 | - |
|
238 |
+
| 9.0395 | 4800 | 0.0047 | - |
|
239 |
+
| 9.1337 | 4850 | 0.0099 | - |
|
240 |
+
| 9.2279 | 4900 | 0.0054 | - |
|
241 |
+
| 9.3220 | 4950 | 0.0185 | - |
|
242 |
+
| 9.4162 | 5000 | 0.005 | - |
|
243 |
+
| 9.5104 | 5050 | 0.0004 | - |
|
244 |
+
| 9.6045 | 5100 | 0.013 | - |
|
245 |
+
| 9.6987 | 5150 | 0.0002 | - |
|
246 |
+
| 9.7928 | 5200 | 0.0187 | - |
|
247 |
+
| 9.8870 | 5250 | 0.0003 | - |
|
248 |
+
| 9.9812 | 5300 | 0.0081 | - |
|
249 |
+
|
250 |
+
### Framework Versions
|
251 |
+
- Python: 3.10.12
|
252 |
+
- SetFit: 1.0.3
|
253 |
+
- Sentence Transformers: 3.0.1
|
254 |
+
- Transformers: 4.40.2
|
255 |
+
- PyTorch: 2.4.0+cu121
|
256 |
+
- Datasets: 2.21.0
|
257 |
+
- Tokenizers: 0.19.1
|
258 |
+
|
259 |
+
## Citation
|
260 |
+
|
261 |
+
### BibTeX
|
262 |
+
```bibtex
|
263 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
264 |
+
doi = {10.48550/ARXIV.2209.11055},
|
265 |
+
url = {https://arxiv.org/abs/2209.11055},
|
266 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
267 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
268 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
269 |
+
publisher = {arXiv},
|
270 |
+
year = {2022},
|
271 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
272 |
+
}
|
273 |
+
```
|
274 |
+
|
275 |
+
<!--
|
276 |
+
## Glossary
|
277 |
+
|
278 |
+
*Clearly define terms in order to be accessible across audiences.*
|
279 |
+
-->
|
280 |
+
|
281 |
+
<!--
|
282 |
+
## Model Card Authors
|
283 |
+
|
284 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
285 |
+
-->
|
286 |
+
|
287 |
+
<!--
|
288 |
+
## Model Card Contact
|
289 |
+
|
290 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
291 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.40.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.40.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b49a023a593684036510e052dfc9090ef97a54ed91171990054ac35ecee17e0b
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:613128c6dc5503ba761c362160ad96b673bd5694606d38a7fcff84e48fe1423e
|
3 |
+
size 3935
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|